NDN, Technical Report NDN-0022. http://named-data.net/techreports.html

NDN Technical Memo: Naming Conventions

NDN Project Team

Revision history

Revision | Revision date | Description
1 July 21, 2014 Initial release

1 Introduction

This document describes the NDN naming conventions that gradually evolved during the past years of
NDN application development practice. We intend to revise and extends this document and the described
conventions as we gain more understanding about requirements of NDN applications and their interactions
with the components of the NDN architecture.

The aim of this document is to provide general guidelines for NDN application developers to design their
application namespaces. The conventions described in this document are just RECOMMENDATIONS, and it
is up to the application developers to decide whether to follow these conventions or to override them with
their own definitions. However, following the well-established conventions allows design of applications that
are most efficient for NDN infrastructure to handle, less painful to debug, best understandable to end-users,
and most interoperable with the other applications that follow the same conventions.

The conventions developed in this document are inspired by the CCNx Basic Naming Conventions spec-
ification [2]. We added several changes to reflect our current understanding about the naming conventions
based on the experience from application development.

2 Value of NDN Name Components

In the wire format, name components are encoded as pure byte strings encapsulated in TLV-style headers and
therefore it is possible to put any byte value in the component. However, NDN naming convention encourages
the use of human-readable clear-text strings as name components, which resembles the file system naming
scheme. UTF-8 encoding scheme is used to convert human-readable strings into byte representation in the
packet. This allows accommodation to multiple languages in an internationalized environment.

For example, the name /ndn/edu/ucla/melnitz/data/3/electrical/aggregate/power/instant used
in NDN Building Management System encodes the building name and sensor data type in clear text, which
is intuitive and straightforward for the application end-users, in this case, the building managers.

The following list shows several cases where human-readable names are not feasible.

e Component encodes version and segment numbers with special markers, which is described later.

e Component encapsulates application-defined TLV component. For example, Signed Interest [4] requires
embedding SignatureInfo and SignatureValue NDN TLV [3] components as part of the name:

/signed/interest/name/.../<SignatureInfo>/<SignatureValue>
e Component encodes raw application specific data, such as cryptographic digests. For example,
/.../%00%C3...%BC%16

Refer to NDN TLV specification [3] that defines the “NDN URI Scheme” with the specific conversion
rules between human readable URI and wire (NDN TLV) format representations.

http://named-data.net/techreports.html
/ndn/edu/ucla/melnitz/data/3/electrical/aggregate/power/instant
/signed/interest/name/.../<SignatureInfo>/<SignatureValue>
/.../%00%C3...%BC%16

3 Functional Name Component: Special Markers

In a variety of situations, name components need to represent commands or annotations that can appear at
arbitrary levels in the name hierarchy, intermixed with the human readable components that are analogous
to pieces of file names. In these cases, the position in the name is not able to distinguish the components
role and hence one must rely on coding conventions in the component itself. Wherever possible, however,
the function or meaning of a name component should be determined by its context within the overall name
and under the specific application semantics, and human readable components should be used where they
will not be mistaken for functional name components.

The specification of UTF-8 prohibits certain octet values from occurring anywhere in a UTF-8 encoded
string. These are the (hex) octet values 0xCO, 0xC1, and 0xF5 to OxFF. In addition, the null octet 00 is
used for string termination and so does not encode a usable character. Thus, these make good markers to
identify components of a NDN name that play special functional roles such as for versioning and segment
numbering.

The following sections introduce some naming conventions that assign the prohibited octet values to the
specific functions: segmenting, versioning, and sequencing. Note that the meaning of the special markers are
application-layer information. From the router’s perspective these functional components are no different
from other name components. Although, the specific semantics of the special markers is ultimately defined
by the application, the consistent use the naming convention helps applications to get the most advantage
of the NDN architecture. For example, when the segmenting convention is properly used by the application,
this application can get additional benefits from NDN routers, if a caching policy that prioritizes caching
of the whole Data is in place. Further discussion about the specific properties and advantages that naming
conventions, defining semantics of the name component(s), bring to the applications is outside the scope of
this document. However, it is an active discussion within NDN project team and beyond.

3.0.1 Marker and Value Encoding

In the current convention, a functional name component is constructed using a marker octet from the UTF-8
prohibited set as the first octet, followed by the value in the following format based on non-negative integer
encoding of NDN-TLV [3]:
NameComponentWithMarker ::= NAME-COMPONENT-TYPE TLV-LEGTH
Marker
includedNonNegativeInteger

Marker ::= BYTE
includedNonNegativelInteger ::= BYTE+

NDN-TLV := TLV-TYPE TLV-LENGTH TLV-VALUE?
TLV-TYPE := VAR-NUMBER

TLV-LENGTH := VAR-NUMBER

TLV-VALUE := BYTE+

The only difference between includedNonNegativeInteger and nonNegativeInteger defined in NDN-
TLV spec [3] is the way the size of the stored non-negative integer is calculated. More specifically, length
value of the TLV element containing includedNonNegativeInteger MUST be either 1, 2, 4, or 8 PLUS size
of the prefixed elements. For NameComponentWithMarker, given that prefix is always a marker with size 1,
the only values allowed values fro TLV-LENGTH are: 2, 3, 5, and 9.

Depending on the length MINUS size of the prefixed elements, a includedNonNegativeInteger is en-
coded as follows:

e if the length MINUS size of the prefixed elements is 1 (i.e., the value length is 1 octet), the inclu-
dedNonNegativeInteger is encoded in one octet;

e if the length MINUS size of the prefixed elements is 2 (= value length is 2 octets), the includedNonNe-
gativelnteger is encoded in 2 octets, in net byte-order;

e if the length MINUS size of the prefixed elements is 4 (= value length is 4 octets), the includedNonNe-
gativeInteger is encoded in 4 octets, in net byte-order;

e if the length MINUS size of the prefixed elements is 8 (= value length is 8 octets), the includedNonNe-
gativeInteger is encoded in 8 octets, in net byte-order.

In the future, we plan to extend the naming conventions and encoding methods to include different types
of markers that could extend beyond a single naming component.

3.1 Segmenting

Segmenting is used when the application wants to cut a large data into small pieces. For segmenting purposes,
we define two special markers (see Table 1): 0x00 for sequence-based segmentation and 0xFB for byte offset
segmentation. When sequence-based segmentation is used, each segmented Data packet should be assigned
a sequential segment number, starting from 0: 0, 1, 2, ... When byte-offset segmentation is used, each
segmented Data packet should be assigned a byte offset of the segmented content: 0, (content size in first
Data packet), (sum of content sizes in first two Data packets), ...

The segment number is recommended to be put as the last name component, not including the implicit
digest.

Table 1: Segmenting markers
Marker \ Value meaning

0x00 Segment-number
OxFB Byte offset

3.2 Versioning

Versioning is necessary if the application wants to update previously published data and publish again under
the same name. Since NDN mandates every data packet to have a unique name, a version component must
be added to allow unambiguous naming for different versions of the data.

The current convention define use of 0xFD marker for versioning (Table 2). The following value should
represent number of milliseconds since UNIX epoch (Thursday, 1 January 1970) not counting leap seconds,
generated from the system clock to indicate the creation time of the Data.

One of the main reasons to recommend timestamp as a value for the version is the ultimate goal for
the version component be numerically larger for the “latest” version. Timestamp provides a relative easy
way to achieve this goal for single or multi-producer applications, assuming the producer will take care of
properly synchronizing their clocks. If clock synchronization is not feasible for a distributed application, this
application must make all attempts in some other way to ensure version property. Otherwise, the use of
the defined versioning marker may harm the application, as third-parties may incorrectly treat Data packet
with the “largest” version as the “latest” (e.g., prioritize caching of it).

Table 2: Versioning marker
’ Marker \ Value meaning ‘

’ 0xFD \ Number of milliseconds since UNIX epoch ‘

3.2.1 Sequencing

Sequencing data collections is another common feature in many applications. Named Data Networking
daemon (NFD) [1] uses such collections as part of the face status notification protocol; ChronoSync [5]
protocol provide efficient synchronization primitives for sequenced data collections. While the sequence
number value in these collections is syntactically similar to sequence-based segmentation, the sequence
number has a very different meaning. Third parties (e.g, ContentStore) that can understand this difference,

may provide better help with data retrieval for the applications properly using segmentation and sequencing
conventions.

Naming convention for sequence is defined in Table 3: marker OxFE followed by the sequence number of
the Data packet in the dataset.

Table 3: Sequencing marker
’ Marker \ Value meaning ‘

’ OxFE \ Sequence number of the Data in the dataset ‘

References

[1] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, et al. NFD developer’s guide. Technical
Report NDN-0021, NDN, July 2014.

[2] CCNx Project. CCNx basic name conventions. Online: http://www.ccnx.org/releases/latest/doc/
technical/NameConventions.html, 2013.

[3] NDN Project Team. NDN packet format specification (version 0.1.1). Online: http://named-data.
net/doc/ndn-tlv/, 2014.

[4] NFD Team. Signed Interest. Online: http://redmine.named-data.net/projects/ndn-cxx/wiki/
SignedInterest, 2014.

[6] Zhenkai Zhu and Alexander Afanasyev. Let’s ChronoSync: Decentralized dataset state synchronization
in Named Data Networking. In Proceedings of the 21st IEEE International Conference on Network
Protocols (ICNP 2013), Goettingen, Germany, October 2013.

http://www.ccnx.org/releases/latest/doc/technical/NameConventions.html
http://www.ccnx.org/releases/latest/doc/technical/NameConventions.html
http://named-data.net/doc/ndn-tlv/
http://named-data.net/doc/ndn-tlv/
http://redmine.named-data.net/projects/ndn-cxx/wiki/SignedInterest
http://redmine.named-data.net/projects/ndn-cxx/wiki/SignedInterest

	Introduction
	Value of NDN Name Components
	Functional Name Component: Special Markers
	Marker and Value Encoding
	Segmenting
	Versioning
	Sequencing

