
NDN, Technical Report NDN-0022. http://named-data.net/techreports.html

NDN Technical Memo: Naming Conventions

NDN Project Team

Revision history

Revision Revision date Description
1 July 21, 2014 Initial release

1 Introduction

This document describes the NDN naming conventions that gradually evolved during the past years of
NDN application development practice. We intend to revise and extends this document and the described
conventions as we gain more understanding about requirements of NDN applications and their interactions
with the components of the NDN architecture.

The aim of this document is to provide general guidelines for NDN application developers to design their
application namespaces. The conventions described in this document are just recommendations, and it
is up to the application developers to decide whether to follow these conventions or to override them with
their own definitions. However, following the well-established conventions allows design of applications that
are most efficient for NDN infrastructure to handle, less painful to debug, best understandable to end-users,
and most interoperable with the other applications that follow the same conventions.

The conventions developed in this document are inspired by the CCNx Basic Naming Conventions spec-
ification [2]. We added several changes to reflect our current understanding about the naming conventions
based on the experience from application development.

2 Value of NDN Name Components

In the wire format, name components are encoded as pure byte strings encapsulated in TLV-style headers and
therefore it is possible to put any byte value in the component. However, NDN naming convention encourages
the use of human-readable clear-text strings as name components, which resembles the file system naming
scheme. UTF-8 encoding scheme is used to convert human-readable strings into byte representation in the
packet. This allows accommodation to multiple languages in an internationalized environment.

For example, the name /ndn/edu/ucla/melnitz/data/3/electrical/aggregate/power/instant used
in NDN Building Management System encodes the building name and sensor data type in clear text, which
is intuitive and straightforward for the application end-users, in this case, the building managers.

The following list shows several cases where human-readable names are not feasible.

• Component encodes version and segment numbers with special markers, which is described later.

• Component encapsulates application-defined TLV component. For example, Signed Interest [4] requires
embedding SignatureInfo and SignatureValue NDN TLV [3] components as part of the name:

/signed/interest/name/.../<SignatureInfo>/<SignatureValue>

• Component encodes raw application specific data, such as cryptographic digests. For example,

/.../%00%C3...%BC%16

Refer to NDN TLV specification [3] that defines the “NDN URI Scheme” with the specific conversion
rules between human readable URI and wire (NDN TLV) format representations.

1

http://named-data.net/techreports.html
/ndn/edu/ucla/melnitz/data/3/electrical/aggregate/power/instant
/signed/interest/name/.../<SignatureInfo>/<SignatureValue>
/.../%00%C3...%BC%16


3 Functional Name Component: Special Markers

In a variety of situations, name components need to represent commands or annotations that can appear at
arbitrary levels in the name hierarchy, intermixed with the human readable components that are analogous
to pieces of file names. In these cases, the position in the name is not able to distinguish the components
role and hence one must rely on coding conventions in the component itself. Wherever possible, however,
the function or meaning of a name component should be determined by its context within the overall name
and under the specific application semantics, and human readable components should be used where they
will not be mistaken for functional name components.

The specification of UTF-8 prohibits certain octet values from occurring anywhere in a UTF-8 encoded
string. These are the (hex) octet values 0xC0, 0xC1, and 0xF5 to 0xFF. In addition, the null octet 00 is
used for string termination and so does not encode a usable character. Thus, these make good markers to
identify components of a NDN name that play special functional roles such as for versioning and segment
numbering.

The following sections introduce some naming conventions that assign the prohibited octet values to the
specific functions: segmenting, versioning, and sequencing. Note that the meaning of the special markers are
application-layer information. From the router’s perspective these functional components are no different
from other name components. Although, the specific semantics of the special markers is ultimately defined
by the application, the consistent use the naming convention helps applications to get the most advantage
of the NDN architecture. For example, when the segmenting convention is properly used by the application,
this application can get additional benefits from NDN routers, if a caching policy that prioritizes caching
of the whole Data is in place. Further discussion about the specific properties and advantages that naming
conventions, defining semantics of the name component(s), bring to the applications is outside the scope of
this document. However, it is an active discussion within NDN project team and beyond.

3.0.1 Marker and Value Encoding

In the current convention, a functional name component is constructed using a marker octet from the UTF-8
prohibited set as the first octet, followed by the value in the following format based on non-negative integer
encoding of NDN-TLV [3]:

NameComponentWithMarker ::= NAME-COMPONENT-TYPE TLV-LEGTH

Marker

includedNonNegativeInteger

Marker ::= BYTE

includedNonNegativeInteger ::= BYTE+

NDN-TLV := TLV-TYPE TLV-LENGTH TLV-VALUE?

TLV-TYPE := VAR-NUMBER

TLV-LENGTH := VAR-NUMBER

TLV-VALUE := BYTE+

The only difference between includedNonNegativeInteger and nonNegativeInteger defined in NDN-
TLV spec [3] is the way the size of the stored non-negative integer is calculated. More specifically, length
value of the TLV element containing includedNonNegativeInteger MUST be either 1, 2, 4, or 8 PLUS size
of the prefixed elements. For NameComponentWithMarker, given that prefix is always a marker with size 1,
the only values allowed values fro TLV-LENGTH are: 2, 3, 5, and 9.

Depending on the length MINUS size of the prefixed elements, a includedNonNegativeInteger is en-
coded as follows:

• if the length MINUS size of the prefixed elements is 1 (i.e., the value length is 1 octet), the inclu-

dedNonNegativeInteger is encoded in one octet;

• if the length MINUS size of the prefixed elements is 2 (= value length is 2 octets), the includedNonNe-
gativeInteger is encoded in 2 octets, in net byte-order;

2



• if the length MINUS size of the prefixed elements is 4 (= value length is 4 octets), the includedNonNe-
gativeInteger is encoded in 4 octets, in net byte-order;

• if the length MINUS size of the prefixed elements is 8 (= value length is 8 octets), the includedNonNe-
gativeInteger is encoded in 8 octets, in net byte-order.

In the future, we plan to extend the naming conventions and encoding methods to include different types
of markers that could extend beyond a single naming component.

3.1 Segmenting

Segmenting is used when a large data is cut into several pieces. Each individual segment is assigned its own
unique name and can be individually retrieved. Although not defined in this document, applications should
strive to define segmentation in the way that makes possible to process individual segments on their own,
without requiring waiting until the whole data is assembled. For example, a large video frame could be split
into segments, each individually contributing complete pieces of the frame encoding.

For segmenting purposes, we define two special markers (see Table 1): 0x00 for sequence-based segmen-
tation and 0xFB for byte offset segmentation. When sequence-based segmentation is used, each segmented
Data packet should be assigned a sequential segment number, starting from 0: 0, 1, 2, ... When byte-offset
segmentation is used, each segmented Data packet should be assigned a byte offset of the segmented content:
0, (content size in first Data packet), (sum of content sizes in first two Data packets), ...

The segment number is recommended to be put as the last name component, not including the implicit
digest.

Table 1: Segmenting markers
Marker Value meaning

0x00 Segment-number
0xFB Byte offset

3.2 Versioning

In NDN, all Data packets are immutable and cannot be changed after being published. Therefore, when
an applications needs to publish a “new” version of the data, it should be published under a new unique
name using a proper versioning protocol. The main goal and property of the versioning protocol is to
explicitly define the name-based ordering of Data versions: the “larger” is the name (in NDN-TLV canonical
ordering [3]), the “newer” is the version of the Data.1

The current convention define use of 0xFD marker for time-based versioning (Table 2). Version in this
protocol is represented as the number of milliseconds since UNIX epoch (Thursday, 1 January 1970) not
counting leap seconds, generated from the system clock to indicate the creation time of the Data. If the
application wants to use a non-time-based versioning, another marker should be used.2

One of the main reasons to recommend timestamp as a value for the version is simplicity to achieve
the main goal in many environments, i.e., to ensure that the version component is “larger” for the “latest”
version. Assuming data producers will take care of properly synchronizing their clocks, it is trivial to assign
the correct version number in any multi-producer application without the need of introducing any version
synchronization protocols. If the clock synchronization is not feasible, the application should use non-time-
based versioning and/or make all attempts to ensure versioning property in some other way. Otherwise, the
use of the defined versioning marker may harm the application, as third-parties may incorrectly treat Data
packet with the “largest” version as the “latest” (e.g., prioritize caching of it).

1Without the use of versioning protocol, the implicit digest name component still makes all Data packets unique, but it is
impossible to determine based on the name which version is “newer”.

2Future revisions of this document may include additional recommendations and conventions regarding uses of non-time-base
versioning.

3



Table 2: Versioning marker
Marker Value meaning

0xFD Number of milliseconds since UNIX epoch

3.2.1 Sequencing

Sequential data collections is another common feature in many NDN applications. Named Data Networking
daemon (NFD) [1] uses such collections as part of the face status notification protocol; ChronoSync [5]
protocol provide efficient synchronization primitives for sequenced data collections. Each item in these
collections is numbered using monotonically increasing non-negative integer starting from zero. Collection
items should be complete application-specific data items with or without application dependency on other
collection items.

The following property, that can be leveraged by third-party applications, should hold for the items in
the sequential data collections. If it is known that there exists a collection item with the sequence number
X, then it is implied that items 0, 1, . . . (X − 1) has been already produced and item (X + 1) exists or could
be produced in the future. (Note that this property does not require or guarantee that all “previous” items
can be retrieved.)

Naming convention for sequence is defined in Table 3: marker 0xFE followed by the sequence number
(monotonically increasing non-negative integer) of the data item in the dataset. Each data item is either an
individual Data packet or a collection of multiple segmented Data packets.

Table 3: Sequencing marker
Marker Value meaning

0xFE Sequence number of the Data in the dataset

References

[1] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, et al. NFD developer’s guide. Technical
Report NDN-0021, NDN, July 2014.

[2] CCNx Project. CCNx basic name conventions. Online: http://www.ccnx.org/releases/latest/doc/
technical/NameConventions.html, 2013.

[3] NDN Project Team. NDN packet format specification (version 0.1.1). Online: http://named-data.

net/doc/ndn-tlv/, 2014.

[4] NFD Team. Signed Interest. Online: http://redmine.named-data.net/projects/ndn-cxx/wiki/

SignedInterest, 2014.

[5] Zhenkai Zhu and Alexander Afanasyev. Let’s ChronoSync: Decentralized dataset state synchronization
in Named Data Networking. In Proceedings of the 21st IEEE International Conference on Network
Protocols (ICNP 2013), Goettingen, Germany, October 2013.

4

http://www.ccnx.org/releases/latest/doc/technical/NameConventions.html
http://www.ccnx.org/releases/latest/doc/technical/NameConventions.html
http://named-data.net/doc/ndn-tlv/
http://named-data.net/doc/ndn-tlv/
http://redmine.named-data.net/projects/ndn-cxx/wiki/SignedInterest
http://redmine.named-data.net/projects/ndn-cxx/wiki/SignedInterest

	Introduction
	Value of NDN Name Components
	Functional Name Component: Special Markers
	Marker and Value Encoding
	Segmenting
	Versioning
	Sequencing



