Implementing TCP SACK Conservative Loss Recovery Algorithm within a NDN Consumer
Shuo Yang
1. Design

* Consumer uses packet timeout as signal of congestion;

* Consumer reacts to one packet loss event per RTT (to handle a burst of packet loss);
* Consumer takes one RTT sample per RTT;

* Consumer uses TCP's AIMD scheme to adjust congestion window size;

2. Algorithm

Parameters:
* m_highData: the highest segment number of the Data packet the consumer has received so far;
* m_highInterest: the highest segment number of the Interests the consumer has sent so far;
* m_recPoint: the value of m_highInterest when a packet loss event occurred. It remains fixed until the
next packet loss event happens;
* m_cwnd: congestion window size (unit: segment), initial value: O;
¢ m_ssthresh: slow start threshold, initial value: 200;

Time out occurred

m_recPoint =0 m_highData m_highinterest m_recPoint

. /L J \ J
Y Y Y

Acked Sent but not acked To be sent

Algorithm description:

» Initially, m_highData, m_highInterest and m_recPoint all set to 0;

* A packet loss event happens when m_highData > m_recPoint;

* When a timeout occurred, if m_highData > m_recPoint, this timeout would be considered a packet loss
event, consumer should update m_recPoint with the value of m_highlInterest, then adjust congestion
window size accordingly (ssthresh = cwnd/2, cwnd = 1); otherwise the timeout wouldn't be considered
as a packet loss event and consumer doesn't adjust window size;

* the value of m_highData will be updated each time a Data packet was received; the value of
m_highlInterest will updated each time an Interest packet was sent;

In the above figure, initially, m_recPoint = 0. When the time out happened at the segment represented by the red
circle, since m_highData > m_recPoint, it's considered a packet loss,

so m_recPoint = m_highInterest, and consumer won't react to all the timeouts of the segments in the blue area
until the condition m_highData > m_recPoint is true again. Therefor consumer only reacts to at most one packet
loss per RTT.

Pseudo code:

Function OnData (data, segmentNo) Function OnTimeout ()

If m_highData < segmentNo then If m_highData > m_recPoint then
m_highData = segmentNo; m_recPoint = m_highlInterest;

End if m_ssthreshold = m_cwnd / 2;

m_cwnd = m_ssthreshold;

If m_cwnd < m_ssthreshold then BackoffRto();
m_cwnd = m_cwnd + 1; End if

Else
m_cwnd =m_cwnd + 1/ m_cwnd; SchedulePackets();

End if

SchedulePackets();

3. Implementation

We updated chunks application of ndn-tools repository with the congestion control algorithm mentioned above.
The current version of chunks application uses a fixed window size and a “backoff and retry” strategy to deal
with packet loss. Regarding to how chunks application works, please refer to “how-chunks-works.pdf” for
details.

Without touching other modules, we mainly modified pipeline-interest module with the following changes:

» discard the use of data-fetcher module for Interest transmission, pipeline-interest directly schedules
and sends Interests by itself;

» original pipeline-interest module uses NDN's own timeout mechanism (Interest lifetime expiration) to
detect timeout, the modified version replies on RTT/RTO estimation as used by TCP.

* An internal class SegmentInfo is used to wrap up a sent-but-not-acknowledged segment's related
information. It includes: Pending Interest ID (used to remove a timed out Interest from face), state, RTO
(used for timeout detection) and time it was sent (used to calculate RTT) for that segment.

* Akey data structure is a C++ std::map that maps segment number to its SegmentInfo object.

* an event is scheduled every 10ms (configurable) to check timed out segments. It works by scanning the
m_segmentInfoMap, for each sent-but-not-acknowledged segment, calculate how long has passed since
it was sent out, if greater than the RTO value stored in SegmentInfo object associated with that segment,
time out that segment.

Added modules and features:
* added a rtt-estimator module which implements a mean-deviation RTT estimator as elaborated in
RFC6298;
» if -v (verbose) option is on, a brief performance summary will be printed out on the stderr after
downloading finishes;
* added a new command line option -s (keep stats) to output statistics to files after downloading finishes;

State diagram for congestion control:

New ACK

cwnd = cwnd + 1

Update m_highData with the segment
number of newly arrived data;

Send new segments and update
m_highinterest, as allowed,

New ACK

cwnd = cwnd + 1/ewnd

Update m_highData with the segment
number of newly arrived data;

Send new segments and update
m_highinterest, as allowed

Start — -
7N ah
cwnd =1 { v \
ssthresh =200 . : d> thresh |
m_highinterest = 0 cwna == ssires i
m_highData = 0 Slow start > 2?,2%?:5:
m_recPoint=0 I

A

Timeout & m_highData > m_recPaint | I‘

| ssthresh = cwnd/2
cwnd = ssthresh

|
[New ACK

)) .
Timeout & m_highData > m_recPoint ||‘ m_recPoint = m_highinterest_—~ |
ssthresh = cwnd/2 | Retransmit missing segmefits Jewnd = cwnd + Lewnd
cwnd = ssthresh | { Update m_highData with the segmen’
\ /

m_recPoint = m_highinterest
Retransmit missing segments

\ \
\x. Fast
recovery
State diagram for segment:
Window is available
Sent for ACK arrive
First time
ACK arrive
(spurious timeout)
Timeout —

" number of newly arrived data;
Send new segments and update
m_highinterest, as allowed

/

/

ACK arrive

.'/'
' ;'I
|
In Window is available
Retransmission
queue

p Retransmitted

