
Remote Register Entry Machine

Yanbiao Li

Figure 1 presents the complete state machine of the
remote registered entry1. It describes all possible states
during the whole processes of remote registration/unregistration.
But for implementation, it can be simplified.

Firstly, all unregister-related states can be eliminated.
As depicted, any unregister-related state is driven by
the ‘rib erase‘ event or switched from another unregister-
related state. Thus, let’s see what we could do when an
entry is erased from the RIB2. If the corresponding reg-
istered entry exists, there are 5 cases according to its
status:

• NEW: In this case, there is no connectivity to the
hub. We could delete this entry from the registered
list only.

• REGISTERED or REGISTER_FAIL: In these two cases,
we have already get the response from the remote
hub. No matter the registration succeeds on the
remote hub or not, we could delete this entry from
the registered list and then send out unregistration
command if there is a connectivity (whether this
is required is discussed later).

• REGISTERING or REGISTER_WAIT: In these two cases,
we also delete this entry and then do remote unreg-
istration when feasible. Then, there may be two
remote operations working at the same period. If
the current unregistration is processed after the
previous registration, the situation gets back to
the above point. Otherwise, the current unreg-
istration will fail because trying to unregister an
non-existing entry. If the previous registration fi-
nally fails, the ‘unregistering entry‘ will not exists.
However, if the previous registration succeeds at
last, it seems to be a problem. But, actually, this
entry has already been deleted from the registered

1draw based on http://redmine.named-
data.net/attachments/download/315/remoteregister-
statemachine 20150430.png
2Assume that there is the only rib entry corresponding to a
registered entry. Otherwise, if there are two or more, noth-
ing need to do with the registered list unless all of them are
erased.

list, once we get response of registration of an non-
existing entry, we will start unregistration instead
of scheduling refresh event or retry event. Thus, it
may not be a really problem.

In a word, no matter in which case, once a ‘rib erase‘
event happens, we just delete the corresponding entry
from the registered list and do unregistration if there is a
connectivity. Will this lead to some potential problem?
The answer is NO! Assume we have deleted an entry
due to some ’rib erase’ event (this means there may not
be another ‘rib erase‘ event toward this entry unless it
is inserted again.). There may be 5 events related to
this entry will trigger further state transition after this
‘rib erase‘ event:

• rib insert. Expect: Inserting an unregistered
entry is the same as inserting a new entry. Ac-
tual: As the inserting entry can not found in the
registered list, it will be processed as a new entry.

• hub connect. Expect: Unregistered entry should
not be re-registered. Actual: Only the entry in
the registered list will be re-registered.

• hub disconnect. Expect: Nothing need to do
with unregistered entry. Actual: Only the events
associated with all entries in the registered list will
be canceled.

• register succeed. This means unregistration of
this entry is processed before previous registration.
Expect: unregistered this entry remotely. Ac-
tual: remote unregistration is started in response
to successful of remote registration of an entry that
does not exist in the registered list.

• register fail. This also means unregistration
of this entry is processed before previous registra-
tion. Expect: unregistered this entry remotely
(the failure may resulted by time out only.). Ac-
tual: remote unregistration is started in response
to failure of remote registration of an entry that
does not exist in the registered list.

1



new

registeringregister_fail registered

rib insert

hub connect
hub disconnect

register fail

retry timer

register succeed

refresh timer

hub disconnect hub disconnect

unregistering

register_wait unregister_wait

unregister_fail unregistered

rib insert

rib erase

register succeed/fail

unregister succeed/fail rib insert

hub disconnect

rib erase rib erase

rib erase

unregister fail unregister succeed
hub disconnect

Figure 1: Complete state machine.

new

registeringregister_fail registered

rib insert

hub connect
hub disconnect

register fail

retry timer

register succeed

refresh timer

hub disconnect hub disconnect

register_wait

unregister succeed/fail

Figure 2: Eliminate unregister-related states.

2



• unregister succeed/fail. Expect: Nothing need
to do (this is discussed later). Actual: Do noth-
ing.

Accordingly, in response to a ‘rib erase‘ event, we can
just delete the corresponding entry from the registered
list and do remote unregistration if feasible. In another
word, there is no other state transitions after this point
because the target entry has been removed. Thus, as
shown in figure 2, we can eliminate all unregister-related
states in figure 1.

Secondly, we can merge REGISTERING and REGISTER_-

WAIT into one state. As shown in figure 3, once the re-
mote hub receives the registration command and starts
processing it, the status of this entry transits from REG-

ISTERING to REGISTER_WAIT. This is an inevitable tran-
sition and must happen on the remote NFD. While the
local NFD will not know exactly when this transition
happens. Thus, it’s hard for the local NFD to distin-
guish these two states.

Besides, as shown in figure 2, REGISTER_WAIT only
connectes to REGISTERING directly and the driven event
are ‘unregister succeed/fail‘. As the unregistering entry
has already been deleted from the registered list be-
fore the remote unregistration succeeds or fails, it will
not affect later operation on other entries any more. If
the unregistration succeeds finally, nothing need to do.
Even if it fails, we can also do nothing because the re-
motely registered entry on the remote hub will expire
automatically without refreshing. Thus, we should do
nothing when the unregistration succeeds/fails, and can
merge REGISTERING and REGISTER_WAIT into one state
REGISTERING (as shown in figure 4), which starts from
sending out registration command and ends by receiv-
ing command response.

At last, we add a virtual state RELEASED as the final
state, the transition to which is triggered by the ‘rib
erase‘ event (as shown in figure 5). While for any reg-
istered entry, there are only four states should be imple-
mented: NEW, REGISTERING, REGISTERED and REGISTER_FAIL.

The rest issue is whether we should do remote unreg-
istration when the ‘rib erase‘ event happens in the case
that the previous registration of this entry has failed.
If we start remote unregistration in this case, the ad-
vantage is we can avoid receiving some unexpected in-
terests in a given period probably (the previous regis-
tration may succeed, but it may expire automatically
without refreshing). But the disadvantage is we should
definitely spend extra cost on generating, signing and
expressing the unregistration command. So I prefer to
do nothing in this case.

3



Rib RemoteRegistrator Controller RibManager
0: insert()

1: registerPrefix()

1: afterInsertEntry()

2: findIdentityForRegistration()

3: startRegistration()

4: start()

5: startCommand()

6: onLocalhopRequest()

ValidatorConfig

7: validate()

8: onCommandValidated()

9: registerEntry()

10: sendSuccessResponse()

11: processCommandResponse()
12: onRegSuccess()

13: scheduleRefreshEvent()

Local Remote

REGISTERING

REGISTER_WAIT

Figure 3: Sequence diagram of remote prefix registration.

new

registeringregister_fail registered

rib insert

hub connect
hub disconnect

register fail

retry timer

register succeed

refresh timer

hub disconnect hub disconnect

Figure 4: Eliminate the state of REGISTER WAIT.

released

rib erase rib eraserib erase rib erase

new

registeringregister_fail registered

rib insert

hub connect
hub disconnect

register fail

retry timer

register succeed

refresh timer

hub disconnect hub disconnect

Figure 5: The final state machine.

4


