
Link Design

Spyros Mastorakis

March 31, 2015

1



1 Link Structure

Link is a data packet, whose content contains multiple pairs in the form of
(alias, preference). It represents one or more namespace delegations. The link
is defined as a new ContentType. This ContentType currently exists in the
ndn-cxx library (i.e., link type from src/encoding/tlv.hpp).

Let’s assume that we have files that are published under /net/ndnsim, but
are hosted under /att/user/alex/net/ndnsim and /verizon/user/alex/net/ndnsim.
The structure of the Link would be the following:

• Name: Name of the link (/net/ndnsim/LINK)

• MetaInfo: ContentType = LINK

• Content: Content in the form of (alias, preference) pairs

(/att/user/alex/net/ndnsim,100)
(/verizon/user/alex/net/ndnsim, 10)

• Signature: Signed by the publisher of the Link

2 Link Implementation

As far as the implementation is concerned, a Link class can be defined, which
would inherit the Data class of ndn-cxx and offer some further functionalities as
well. The pairs of (alias, preference) would be stored as a private variable named
m delegations and defined as a std::multiset <std::pair <name : Name, prefer-
ence : int>>.

The basic methods of this class would be following:

• addDelegation: This method would accept a pair (delegation names,
preference) and store this pair to the m pairs multiset based on its pref-
erence value.

• removeDelegation: Remove a delegation pair based on a given name.

• getDelegations: Get the pairs of ¡Name, Preference¿ as a DelegationSet.

• encodeContent: This method would Encode Link into the content.
Then, the LINK will be encoded as a Data packet.

• wireDecode: This method would first call parent’s wireDecode method
and then decode the payload part.

2



3 Modifications in the Interest class

Regarding the encapsulation of the link in an interest packet, our approach is
to encapsulate it as a Block instance, not as a Link instance directly. In this
way, the Link would be encoded once by the data consumer, who would then
attach it to the interest packet. Thereafter, each router will decode this Block
instance in order to get the Link instance and perform further processing.

The new methods that we are planning to introduce to the Interest class are
the following:

• getLink: This method would convert the Block variable to an actual Link
instance and it is about to be called by the routers.

• setLink: This method would attach the link as a Block to the interest
packet. This method is supposed to be called by the consumer.

• unsetLink: This method would de-attach the existing link from the in-
terest packet.

The wireEncode and wireDecode methods also need to be modified to ac-
count for the introduced link block.

4 LINK TLV wire format

The TLV wire format for the LINK object would be the following:

LinkContent ::= CONTENT-TYPE TLV-LENGTH
Delegation+

Delegation ::= LINK-DELEGATION-TYPE TLV-LENGTH
Preference

Name

Preference ::= LINK-PREFERENCE-TYPE TLV-LENGTH
nonNegativeInteger

where:

LinkPreference = 30,
LinkDelegation = 31,

5 Interest wire format

The wire format of the Interest would be the following:

3



Interest ::= INTEREST-TYPE TLV-LENGTH
Name

Selectors?
Nonce
Scope?

InterestLifetime?
Link?

SelectedDelegation?

where

The SelectedDelegation field will be used to carry the delegation namespace
(its index inside the link object) chosen by a previous hop.

SelectedDelegation ::= SELECTED-DELEGATION-TYPE TLV-LENGTH
nonNegativeInteger

and

SelectedDelegation = 32

The value of the SelectedDelegation field will be 0 up to
(link.getDelegations().size() - 1).

4


