Design Summary of Remote Prefix Registration

Yanbiao Li

1. MODULE OVERVIEW

The Remote Registrator is managed by the RIB Man-
ager to process remote prefix registration, which enables
local applications to register their prefixes to the gate-
way router (remote hub) to receive interests on their
data.

Figure 1 describs the class diagram of the RemoteReg—
istrator moudle. It keeps the refference to the NFD
controller, the key-chain and the RIB, enabling easy
communication with them. Besides, there are two con-
nections connect registerPrefix and unregisterPre-
fixtoRib::afterInsertEntry and Rib: :afterErase-
Entry respectively. Some parameters, that could be
shared by all commands, are stored in m_controlPara-

meters and m_commandOptions. Them_refreshInterval

defines the interval between refreshing and is config-
urable. At last, RemoteRegistrator employs a list of
RemoteRegisteredEntry to maintain all registered en-
tries.

Figure 2 presnets the overview sequence diagram of
remote prefix registration (the process of remote un-
registration is similar), the RemoteRegistrator works
in close cooperation with Rib, RibManageer and Con-
troller. When the RIB Manager loads configurations,
the rib.remote-register section is loaded by the Re-
mote Registrator. It will then be enabled if proper pa-
rameters are loaded. Whenever the RIB is updated by
inserting a new entry (or erasing an existing entry), and
there is a active connectivity to the gateway router, re-
mote registration (or remote unregistration) will be trig-
gered. And the RemoteRegistrator: :m_nfdController
will generate and express the command interests with
proper parameters.

More specifically, on one hand, whenever the Remote
Registrator is being enabled, registerPrefix and un-
registerPrefix will subscribe two signals Rib:after-
InsertEntry and Rib:afterEraseEntry respectively,
which will be emitted after a new entry is inserted into
the RIB and an existing entry is erased from the RIB re-
spectively. On the other hand, when the local NFD gets
connectivity to the remote NFD, a route to the gateway
router is registered to the local RIB with the 1ink lo-

cal nfd prefix (/localhop/nfd). Thus, once such
route exists, the remote registration commands, in for-
mat of /localhop/nfd/rib/ [register|unregister]/...
can be forwarded to the gateway router.

2. IMPLEMENTATION DETAILS

2.0.1 Remotely Registered Entries

On the gateway router, each remote registration is
kept as a ‘soft state’. While one the end host, Remote-
Registrator::m_regEntries maintains all registered
entreis, and the registering prefix is used as the key to
retrive each entry. A RemoteRegisteredEntry consists
of its signing identity, a refresh event, a retry event
and the registration status. There are four available
registration status.

e RemoteRegistrationStatus: :NONE is the init state.

e RemoteRegistrationStatus: :IN_PROGRESS indi-
cates that this entry is being processed.

e RemoteRegistrationStatus: :SUCCESSFUL means
this entry has been successfully registered to the
remote RIB.

e RemoteRegistrationStatus: :FAILED denotes that
this entry has failed in registration.

For registration, if a prefix has been successfully regis-
tered remotely, an event is scheduled to refresh this reg-
istation periodically. And the interval before refreshing
is configurable. By contrast, if the registration falis, an-
other event is scheduled to retry this registration, based
on the exponential back off strategy. Besides, even if
there is no connectivity, satisfied entries (should be reg-
istered but can not now) are also maintained as poten-
tial registrations for later use. While for unregistration,
no matter whether the remote operation succeeds or
not, and even if there is no connectivity, unnecessary
entries are removed from the registered list immediately.

Eventually, in addition to preventing redundant reg-
istrations and unnecessary unregistrations, such a reg-
istered list can also be used to deal with connectivity
changes. Here, connectivity change means that current

RemoteRegistrator

- m_nfdController: ndn::nfd::Controller&

- m_keyChain: ndn::KeyChain&

- m_rib: Rib&

- m_afterInsertConnection: ndn::util::signal::ScopedConnection

- m_afterEraseConnection: ndn::util::signal::ScopedConnection

- m_controlParameters: ndn::nfd::ControlParameters

- m_commandOptions: ndn::nfd::CommandOptions

- m_refreshlinterval: time::seconds

- m_regEntries: std::unordered_map<Name, shared_ptr<RemoteRegisteredEntry>>

+ loadConfig(): void

+ enable(): void

+ disable(): void

+ registerPrefix(): void

+ unregisterPrefix(): void

- findldentityForRegistration(): struct FindldentityResult {Name; Name; bool}
- startRegistration(): void

- startUnregistration(): void

- resendRegCommand(): void

- onRegSuccess(): void

- onRegFailure(): void

- onUnregSuccess(): void

- onUnregFailure(): void

- redoRegistrations(): void

- clearRegistrationEvents(): void

1

0...*

RemoteRegisteredEntry

- m_signingldentity: Name
- m_refreshEvent: scheduler::ScopedEventld
- m_retryEvent: scheduler::ScopedEventld
- m_registrationStatus: RemoteRegistrationStatus
+ setldentity(): void
+ getldentity(): const Name&
+ start(): void
+ succeed(): void
+ fail(): void
+ isInProgress(): bool
+ hasSucceeded(): bool
+ hasFailed(): bool

T 1

1

+ clear(): void

<<enumeration>>
RemoteRegistrationStatus
NONE
IN_PROGRESS
SUCCESSFUL
FAILED

Figure 1: Class diagram of Remote Registrator

| Rib | | RemoteRegistrator

T T

0:insert() | |
1: afterInsertEntry()

1: registerPrefix() 2: findldentityForRegistration()

3: startRegistration()

4: start()

Controller

%L_____________
o
3
5y
3
(@]
o
3
3
D
3
a

11: processCommandResponse() .
-

Local Remote

RibManager ValidatorConfig

\
0
. _6: onLocalhopRequest()
[] 7: validate()

.

A

I
1
|
|
I
1
1
|
I
1
1
]
|
I
I
1
|
I
I
1

: 8: onCommandValidated() u
]
1

ce— -

N 9: registerEntry()

~N

10: sendSuccessResponse()

12: onRegSuccess() [T

[
|
l
1
1
1
1
|
l
1
1
1
1
|
|
1
1

1

13: scheduleRefreshEvent() :

1 1

1 1

1 1

-

(

Figure 2: Sequecnece diagram of remote prefix registration

connectivity is switched to another hub or that current
connectivity gets lost and recovered afterwards. No
matter in which case, there are two types of changes:
current connectivity is lost and a connectivity is estab-
lished. Once current connectivity is lost (i.e., /local-
hop/nfd is erased from the local RIB), the associated
events of all entries in the registered list are canceled.
While when a connectivity is established (i.e., /local-
hop/nfd is inserted into the local RIB), all main-
tained entries are then registered to the connected hub.

2.1 Find identity for registration

To reduce the size of remote RIB and the cost of
processing remote registrations, the remotely registered
prefixes should be aggregated whenever is feasible. Ac-
tually, local NFD owns a key-chain consisting of a set
of identities, each of which defines a namespace and can
cover one or more locally registered prefixes. Given a
locally registered prefix, the shortest identity satisfies it
(here satisfying it menas being a prefix of it) is selected
as the remotely registering prefix and is also used to
sign the registration command. Besides, whenever the
security check is enabled in rib.localhop-security
section, a remote registration command can not pass
the validation unless its signing identity can be verified
by the trust anchor of the gateway router.

2.2 Remote Registration

As described in figure 3, not all locally registered pre-
fix that triggers registerPrefix will lead to remote

registration finally. The prefix scoped for local use (i.e.
starts by /localhost) will terminates the remote regis-
tration immediately. While the prefix indicates a newly
connected hub (i.e. /localhop/nfd) will lead to redo-
ing registrations to the newly connected hub instead of
remotely registering that hub prefix.

Given a prefix considered for remote registration, we
first find out, through findIdentityForRegistration,
the exact prefix for remote registration as well as the
identity that will sign registration command. If there
is an entry corresponding to the registering prefix in
the registered list, retrieve that entry as the processing
entry. Otherwise, create a new entry as the process-
ing entry with the singing identity and insert it into
the registered list. If the processing entry has failed or
being processed, nothing else need to do. Otherwise,
the registering prefix of this entry should be remotely
registered if there is a active connection to some hub.

If the registration succeeds, the processing entry is
flagged as SUCCESSFULL and an even is scheduled to
periodically refresh this registration. However, if this
entry has already been erased from the registered list
(due to locally unregistration), the remotely registered
prefix should be unregistered.

If the registration fails but there are still remaning
retries, just retry this registration immediately. Oth-
erwise, flag the processing entry as FAILED and then
schedule an event to periodically retry this registration
if it still exists in the registered list.

| registerPrefix(prefix) |

| redoRegistrations |

—

| findldentityForRegistration |

can find entry in
registered list with
esult.registeringPrefi

N

new entry generated
and inserted into
registered list

entry has succeeded

Oor In progress

has connected hub

Y
| entry.start() |

—’l startRegistration |

corresponding
entry already erased
Qm registered lis

corresponding
entry already erased
Qm registered lis

| entry.succed(refresh event) | | entry.fail(retry event) |

| periodically refresh periodically retry |

| reSendRegCommand |
|

Figure 3: Work flow of registration.

2.3 Remote Unregistration

Figure 4 presents the detail of unregisterPrefix.
Unregistration of local-use-only prefixes are also not
considered for any remote operations. While unregis-
tration of the hub prefix (i.e. /localhop/nfd) indicates
that all connected hubs get disconnected. In this case,
all events for registration, including both refresh events
and retry events, should be canceled to avoid useless
registration requests.

Then, if a locally unregistered prefix does require re-
mote unregistration, the first step is also to find out the
corresponding remotely registering prefix and the sign-

ing identity through findIdentityForRegistration. Only

if that identity exists and there is an entry (referred to
as processing entry) in the registered list correspond-
ing to the remotely registering prefix, can the remote
unregistration be promoted.

However, if there is another locally registered prefix
can be represented by the processing entry, this entry

| unregisterPrefix(prefix) |

| findldentityForRegistration |

can find entry in
registered list with
esult.registeringPrefi

| erase entry from registered list |

| startUnregistration |

Figure 4: Work flow of unregistration.

must be kept without any remote operations. Other-
wise, erase this entry from the registered list so that
the related event (refresh event or retry event). Thus,
even without successful remote unregistration, the cor-
responding registered entry on remote hub may expire
after some time.

Then, if the processing has already been flagged as
FAILED, nothing need to do. Otherwise, start unreg-
istration if there is a connected hub. If the remote un-
registration fails, immediately retry this unregistration
with remaning retries decreased by one, until there is
no remaning retries.

2.4 Resend Registration Command

No matter for refreshing registrations, retrying reg-
istrations or redoing registrations, reSendRegCom-
mand of Remote Registrator plays the most important
role. As presented in figure 5, processing the requestes
for resending registration command should be very care-
ful. If the processing entry has already been erased from
the registered list (due to local unregistration) and this
resending request is just for retry, the registering prefix
must be unregistered remotely then. Even the process-
ing entry still exists, we should also check the signing
identity carefully. If that identity also exists, just start
remote registration. Otherwise, we must erase the pro-
cessing entry (as the signing identity is no longer avail-

reSendRegCommand

from the registered list by
the registering prefi

| startRegistration |

A\
| erase entry from registered list |

for all locally registered
prefix in the Rib that can be
covered by this entry

| registerPrefix |

Figure 5: Work flow of resend registration com-
mand.

able), find out all locally registered prefix in the RIB
that can be covered by this entry, and re call register-
Prefix for those prefixes.

