
Group-based Encryption API

1

Name-based Access Control
•  Encryption key (E-KEY) name defines the access scope!

•  /<data_type>/E-KEY/[start-ts]/[end-ts]/!
•  data type: determine a primary group!
•  a primary group needs to create E-KEYs continuously!

•  intervals (end-ts – start-ts) do not have to be the same, but have to be multiple
minimum intervals!

2

time

data type

hour
day

month

lvNlv2lv1

...

minimum
access unit

access scope is determined
by the encryption key name

Data Producer
•  Create content encryption key (symmetric key) for each minimum access

unit !
•  encrypt all data packets that fall into the access unit!
•  /<data_type>/C-KEY/[timeslot]!

•  For a particular content encryption key, it may be covered by multiple E-
KEYs!
•  different levels of data type!
•  predictable !

•  have to belong to parent nodes back to root!

•  Data producer has a E-KEY manager!
•  resolve all the E-KEYs that covers current data!

•  data type is a parent name space!
•  walk back alone the naming tree, check if E-KEY exists (using selectors)!

•  [start-ts, end-ts) covers current timestamp!
•  has valid signature!

•  encrypt the content encryption key with all the covering E-KEYs!
•  /<data_type>/C-KEY/[timeslot]/[group_data_type]!

3

Data Producer API
•  Handling:!

•  data encryption!
•  data signing!
•  key storage!

•  Not handling (leave to app)!
•  data storage!
•  data.key publishing!

•  Provides!
•  create content encryption key!
•  collect E-KEYs!
•  prepare content encryption key encrypted

with E-KEYs!
•  prepare content encrypted with content

encryption key!
•  sign data!

•  Ideal usage:!

4

DataProducer producer(“/a/b/c”);

auto encryptedContentKeys =
 producer.createContentKey(“20150806T120000”, onCreated);
// publish encryptedContentKeys

producer.produce(data, “20150806T120000”,
 content, contentLen, onProduced);
// publish data

class DataProducer
{
public:
 /// @brief Create a producer using @p namespace
 DataProducer(const Name& namespace);

 /**
 * @brief Create a content encryption key for the time slot
 * @p timeslot
 *
 * This method creates a content encryption key, collects all
 * the covering E-KEYs, and encrypts the content key using the
 * collected E-KEYs.
 *
 * When processing is finished, @p callback will be invoked,
 * which accepts two arguments: first one is the content key
 * encrypted using the producer’s public key. The second a set
 * of the content key encrypted using each E-KEY.
 */
 void
 createContentKey(Time timeslot,
 const KeyCallback& callback);

 /**
 * @brief Fill @p data with @p content encrypted using the key
 * for @p timeslot
 *
 * This method may segment content when necessary. When
 * processing is done, the @p callback will be invoked, which
 * accepts a set of produced data.
 */
 void
 produce(Data& data, Time timeslot,
 const uint8_t* content, size_t contentLen,
 const DataCallback& callback);
};

Primary Group Manager
•  Name consistent with data namespace!

•  in most cases, parent namespaces!
•  Create group E-KEYs !

•  free to determine the interval of an E-KEY!
•  /<data_type>/E-KEY/[start-ts]/[end-ts]!

•  Grant group members the access to D-KEYs!
•  private part of E-KEY encrypted using member’s public key!
•  /<data_type>/D-KEY/[start-ts]/[end-ts]/[member_name]!

•  Grant partial D-KEYs for finer granularity control!
•  give D-KEYs only for weekends!
•  give D-KEYs only for off-hours in work day!

•  Add member: encrypt D-KEY using member’s public key!
•  Remove member: stop encrypting D-KEY using the member’s key!

5

8a-6p 6p-10p 10p-8a 8a-6p 6p-10p 10p-8a
Thursday Friday

8a-12p 12p-8a
Saturday

8a-12p 12p-8a
Sunday

Group Manager API
•  Handling:!

•  member management!
•  grant partial access!
•  key storage!

•  Not handling (leave to app)!
•  key publishing!

•  Group manager calculates the
granularity of group keys
according to submitted
schedule!

•  Ideal usage:!

6

class GroupManager
{
public:
 /// @brief Create group manager using @p namespace
 GroupManager(const Name& namespace);

 /**
 * @brief Create a group key for interval which
 * @p timeslot falls into
 *
 * This method creates a group key if it does not
 * exist, and encrypts the key using public key of
 * all eligible members
 *
 * @returns The group key (the first one is the
 * public key, and the rest are encrypted
 * private key.
 */
 std::list<Data>
 getGroupKey(Time timeslot);

 /// @brief Add @p memCert with @p schedule
 void
 addMember(const Data& memCert,
 const Schedule& schedule);

 /// @brief Remove @p member from the group
 void
 removeMember(const Name& member);
};

GroupManager manager(“/a/b/c”);

manager.addMember(userCert1, schedule1);
manager.addMember(userCert2, schedule2);

auto groupKey =
 manager.getGroupKey(“20150806T120000”);
// publish groupKey

Schedule
•  For partial access!

•  a set of accessible timeslots!
•  Define a schedule!

•  starting time!
•  ending time!
•  repeating pattern!

•  per week, per day, customizable !
•  Members with the same schedule forms a secondary

group!

7

6p-10p 6p-10p
Thursday Friday

8a-12p
Saturday

8a-12p
Sunday

6p-10p 6p-10p
Thursday Friday Saturday Sunday

Thursday Friday
8a-12p 12p-8a

Saturday
8a-12p 12p-8a

Sunday

Schedule1

Schedule2

Schedule3

Post-Fact Key Distribution
•  Grant a new member the access to data

certain time ago !
•  Create missing E-KEYs/D-KEYs if the

member’s schedule does not exist!
•  encrypt the content key using the newly created

E-KEYs!
•  encrypt all D-KEYs belonging to the schedule

using the member key!
•  group manager already knows the content encryption

key!
•  Publish encrypted D-KEYs!

8

