
Multiple Signature

v0.3!

1 



Certificate
•  A data packet binds key name to key bits!

•  signed by certificate issuer!

•  Naming convention!
•  /<key-name>/[version]!
•  version!

•  certificate issuer may replace its own key periodically!
•  every time a new signing key is created, re-sign the binding between 

key name and key bits, leading to a certificate with new version
!

•  Previously, we assume that there is only one issuer who can 
certify the binding between key name and key bits!
•  version number is consistent from the issuer’s perspective!

2 

Name: /<key_name>/[version]
MetaInfo
Content: key bits

SignatureInfo:
 KeyLocator: /<signing_key_name>

SignatureValue



Multiple Signature
•  Signature on the same (key 

name, key bits) binding?!
•  how to maintain the version? or 

as long as version is consistent 
for each signer!

•  v_m1 < v_m2 < v_m3 < …!
•  v_n1 < v_n2 < v_n3 < …!

•  Signature on the same data 
packet?!
•  encapsulation!
•  who determine the inner 

version, sigInfo, and sigVal?!
•  how to name the outer packet?!
•  how to interpret such an 

encapsulation?!

3 

Content
Name: /<key_name>/v_p
MetaInfo
Content: key bits

SignatureInfo:
 KeyLocator: /signer_p

SignatureValue

Name
MetaInfo

SignatureInfo: /signer_m
SignatureValue

Content
Name: /<key_name>/v_p
MetaInfo
Content: key bits

SignatureInfo:
 KeyLocator: /signer_p

SignatureValue

Name
MetaInfo

SignatureInfo: /signer_n
SignatureValue

Name: /<key_name>/v_m1
MetaInfo
Content: key bits

SignatureInfo:
 KeyLocator: /signer_m

SignatureValue

Name: /<key_name>/v_n1
MetaInfo
Content: key bits

SignatureInfo:
 KeyLocator: /signer_n

SignatureValue



Signature Bundle
•  Latest information about the certificates 

issued by all the issuers!

4 

SigValue

SigInfo: issuer m

Name: 
/<key_name>/v_m1

SigValue

SigInfo: issuer m

Name: 
/<key_name>/v_m2

SigValue

SigInfo: issuer m

Name: 
/<key_name>/v_mk

SigValue

SigInfo: issuer n

Name: 
/<key_name>/v_n1

SigValue

SigInfo: issuer n

Name: 
/<key_name>/v_n2

SigValue

SigInfo: issuer n

Name: 
/<key_name>/v_np

...

...

...

SigValue

SigInfo: self-sign

Content: 

Name: /<key_name>/SIG/v_n
MetaInfo: 

issuer m, v_mk, digest

issuer n, v_np, digest
...



Operations
•  Certificate issuers!

•  prepare certificates with single signature!
•  make sure the certificate name is unique!

•  through a issuer specific version!
•  make certificates available for key owner to collect!

•  Key owners!
•  collect certificates with single signatures!
•  prepare signature bundles!
•  make signature bundles available for verifier to retrieve!

•  Verifiers!
•  follow the KeyLocator in Data packet to retrieve certificate with single 

signature!
•  (optional) when multiple signature is needed, retrieve signature 

bundles!

5 



Issue Certificates
•  Name!

•  /<key_name>/[issuerId]/[version]!
•  issuerId: the first n-bytes of hash of issuer name!

•  if /ndn/ucla/cs/alexissues a cert for /ndn/ucla/cs/yingdi, the 
issuer id is hash(/ndn/ucla/cs/alex)[0:n-1]!

•  when only a few issuers!
•  hash could be simple (e.g., cityhash)!
•  n could be small (e.g., 4)!

•  version: !
•  issuer specific!
•  monotonically increase!

•  SignatureInfo: specified by issuer!
•  e.g., ValiditidyPeriod, …!

6 



Certificate Collection
•  Offline channel!

•  when there are few certificates to collect at low frequency!

•  Cert collecting protocol!
•  PGP-style Key Servers!

•  issuer uploads its issued certificates to a key server (e.g., a repo)!
•  key owners lookup certificates at the key server !

•  Sync!
•  treat all certificates for a single key as a data set to sync !

•  NDNS record!
•  an issuer puts its issued certificates as its own NDNS records for a key 

owner to collect!
•  key owner knows its potential key!
•  a NDNS record encapsulates one issued certificate!

7 



Serve Signature Bundle
•  Prepare Signature bundle !

•  format !
•  name: /<key_name>/SIG/[version]!
•  content:!

•  a list of 3-tuples (issuer_name, latest_version, digest)!
•  signed by key owner!

•  when discover a new certificate!
•  a new issuer or a existing issuer with new cert version!
•  update tuple list & bundle version!

•  when tuple list exceed MTU, segment bundle!

•  Key owner !
•  serve certificates with single signature!
•  serve signature bundle with the latest version!

8 



Certificate Retrieval
•  Verifier extracts key name from KeyLocator of a data packet!

•  If verifier cannot determine the issuer name!
•  send an interest /<key_name>!

•  If verifier can determine the issuer name !
•  e.g. derived according to trust schema!
•  send an interest: /<key_name>/[issuer_id]!

•  If verifier need multiple signatures!
•  send an interest in parallel: /<key_name>/SIG!

•  with MustBeFresh to get the latest version!
•  on receiving signature bundle, a verifier learns all the issuers’ 

name (and latest cert version), send specified interest for cert!

9 


