
NDN, Technical Report NDN-00XX. http://named-data.net/techreports.html

NDN Memo: Automatic Prefix Propagation

Yanbiao Li1, Alexander Afanasyev2, Junxiao Shi3, Beichuan Zhang3, Lan Wang4, and Lixia Zhang2

1Hunan University, lybmath_cs@hnu.edu.cn
2University of California, Los Angeles, [aa,lixia]@cs.ucla.edu

3The University of Arizona, [shijunxiao,bzhang]@email.arizona.edu
4The University of Memphis, lanwang@memphis.edu

Revision history
• Revision 1 (September 23, 2015): Initial re-

vision

ABSTRACT
When the producer application in Named Data Network-
ing (NDN) architecture wants to make the data available for
fetching, it registers data’s prefix with the NDN forwarder
on the same host machine as a producer application. Ef-
fectively, this registration provides a new option to the lo-
cal forwarder where to forward interests for data, if they
cannot be satisfied otherwise. To provide similar option to
the remote NDN forwarders, they need to get configured
manually, use dynamic routing protocols, or rely on oppor-
tunistic data discovery. This memo introduces a new pro-
tocol, Automatic Prefix Propagation, providing an opti-
mal tradeoff between implementation complexity, deploy-
ment complexity, and overheads in environments where the
host machine of the producer application is connected to the
rest of NDN network via one or multiple gateway NDN for-
warders. The automatic prefix propagation protocol uses the
local security configuration (configuration of NDN certifi-
cates) and the inferred presence of gateway routers to auto-
matically send (potentially aggregated) remote registration
requests when prefix is registered locally and maintain this
prefix while it is still present in the local routing information
base (RIB).

1. INTRODUCTION
Producer applications in the Named Data Networking

(NDN) architecture [14] express the intent to make data
available for retrieval by registering data’s prefix with
the NDN forwarder(s)[10]. In the current management
NDN API, this intent takes the form of a command
interest [1] that is directed towards the routing infor-
mation base (RIB) manager running in the instance of
the NDN forwarder running on the same machine as
the producer (local forwarder) [10]. If the request is
authorized, the RIB manager creates necessary entries
in the forwarding information base (FIB) in the local

forwarder, allowing it to properly direct interests with
the registered prefix towards the producer application,
if interests cannot be satisfied by other means.

Directing interests from the remote NDN forwarders
is a more complex issue, which is being addressed in a
number of ways: manual configuration, dynamic name
announcement protocols, and opportunistic data discov-
ery strategies. Different methods have different trade-
off between the implementation complexity, usage com-
plexity, and potential overhead in terms of unnecessary
forwarded interests. Manually configuring remote for-
warders (e.g., using the nfdc command) has trivial im-
plementation cost and, when properly used, can result
in minimal overhead. However, it is the most complex
and tedious when comes to the usage complexity, un-
less a forwarding strategy relies on a pre-defined nam-
ing conventions to forward interests in a greedy fashion
(e.g., using geo or hyperbolic coordinates embedded in
the data names [12, 11]). The dynamic name announce-
ments, e.g., using a routing protocol such as NLSR [11],
minimizes the usage complexity and overhead, but has
significant implementation and deployment costs. Op-
portunistic data discovery, e.g., using the AccessRouter
strategy or the NCC strategy with automatically main-
tained FIB using the nfd-autoreg daemon program, is
simple to use, but has relatively high implementation
complexity and network overhead.

This memo introduces a new dynamic name announce-
ment protocol, the Automatic Prefix Propagation, which
minimizes the complexity and overheads in environments
with one or more remote NDN forwarders acting as
NDN gateways.1 The protocol automatically triggers
the remote prefix registration when an application reg-
isteres prefix locally, provided that (1) there is an active
remote NDN gateway, and (2) the forwarder possesses
a private key and the corresponding NDN certificate
that matches the locally registered namespace. The

1The current version of the protocol assumes a single
NDN gateway. In the future, the protocol will be extended
to multi-gateway environments.

1

first condition is satisfied when “/localhop/nfd” prefix
is present in the local RIB, e.g., configured by NDN
auto-configuration [4]. The second requirement is ful-
filled by the user requesting and installing NDN certifi-
cate that covers the desired namespace in the local for-
warder. Coverage of the NDN certificate is determined
using a basic trust schema [13], described in Section 3.
Note that depending on to which namespace the user-
installed NDN certificate corresponds, the remotely reg-
istered prefix can be shorter than the one registered by
the application. This allows the forwarder to aggregate
multiple local registrations into one remote action, re-
ducing communication and bookkeeping overheads.

The rest of this memo is organized as follows. Sec-
tion 2 demonstrates our motivation by an example. Sec-
tion 3 reviews key design issues and proposes our solu-
tions. The reference implementations are presented in
Section 4, and Section 5 introduces a brief instruction
of the proposed Automatic Prefix Propagation feature.
Section 6 concludes the whole paper.

2. MOTIVATION EXAMPLES
Figure 1 shows two types of remote prefix registra-

tion and their corresponding forwarding processes. As
shown in the left part, the tool ndn-autoreg is adopted
in the router B, to enable an entry with a specified prefix
(i.e., /ndn/ucla) registered to its RIB when a connec-
tion from any end host is established. In this case, when
an Interest toward the app1 that runs in the host k ar-
rives at the router B, all its connected hosts will then
receive this Interest. In this process, the forwarding
cost is much larger than really required. By contrast,
the right part of this figure demonstrates a more ideal
situation, where unnecessary forwarding costs are elim-
inated since the router B has learned enough knowledge
from the host k, through the process called automatic
prefix propagation.

3. DESIGN ISSUES AND OUR SOLUTIONS
In this section, we review a series of key design issues

to facilitate automatic prefix propagation, and propose
our solutions for each.

3.1 What Prefix to Propagate
The desirable propagation is to register prefixes car-

rying knowledges of local RIB entreis to the connected
router, such that it will be aware of where to forward In-
terests under those prefixes. Here comes the first prob-
lem: What prefix should be registered to the con-
nected router by propagation?

Given a local RIB entry, simply propagating its prefix
will work. But it’s unwise due to the risk that the size
of remote RIB2 will increase sharply, especially when

2remote RIB representes the RIB on the connected
router.

there is a large number of hosts connected or there is
a large number of applications run on some hosts. To
this point, we seek for reasonable prefix aggregation to
reduce not only the cost of propagation but also incre-
ments of the remote RIB.

But it’s hard to determine a proper stable aggrega-
tion since you never know what’s the next RIB entry.
Fortunately, NDN’s global hierarchical naming mecha-
nism implicitly establishes connectivities between dif-
ferent parts of the whole architecture, such as secu-
rity, forwarding and routing, etc. Actually, the names-
pace defined by a signing identity deos cover all prefixes
(including sub-identities or application prefixes) it can
sign, which enables us shift our focus from RIB entry
prefixes to identities in local key-chain3.

Thus, propagating an identity, that can represent both
existing and potential RIB entries, will be a reason-
able aggregation. Given a local RIB entry, we propose
to propagate the identity in the local key-chain that
can sign it, which is also used to sign registration com-
mands for this propagation4. Further, if there are two
or more satisfied identities, we select the shortest one
to go deeper in aggregation. Figure 2 shows an example
of such key-chain-involved propagation.

Finally, to complete registration commands for prop-
agation, there are some other parameters should be
carefully defined. Firstly, the route Origin should be
specified as CLIENT and the FaceId should be set to 0
so that the incoming face will be selected when finalizing
the registration on the remote RIB. Besides, there are
two optional parameters, the route Cost and the com-
mand Timeout, that can be configured by users. Last
but most important, the prefix registration Flag [9]
must take the default setting (i.e., CHILD INHERIT
flag will take effect) no matter which flags are used in
the corresponding local RIB entreis. Because the reg-
istered prefix, after aggregation, may be shorter than
the actual one, while another flag (i.e., CAPTURE)
blocks routes with shorter prefixes be used.

3.2 When to Propagate
In section 3.1, we have proposed the mechanism to

determine a prefix to propagate for a given entry in
the local RIB. The next question is When should the
propagation (i.e., register the selected prefix to
the remote RIB) be performed? Our general an-
swer is the propagation should be performed automati-
cally once the local RIB entry is inserted. Correspond-
ingly, when a RIB entry is erased, it may be required to
revoke the performed propagation (i.e., unregister the

3local key-chain represents the key-chain owned by the
local NFD RIB Daemon (NRD) [6].

4If the identity is scoped for NRD use (i.e., the last name
component is ‘nrd‘, its prefix with the last component elim-
inated will be registered while the whole identity is used to
sign registration commands.)

2

A

E

B
D

F

i

j
k

register: /ndn/ucla/alice/app1

register: /ndn/ucla/alice/app2

app1

app2

�ndn/ucla

/ndn/ucla/alice/app1

register: /ndn/ucla
…

ndn-autoreg

before propagation

A

E

B
D

F

i

j
k

register: /ndn/ucla/alice/app1

register: /ndn/ucla/alice/app2

app1

app2

�ndn/ucla

/ndn/ucla/alice/app1

automatic prefix
propagation

after propagation

NDN router

end host

interest

registration

Figure 1: Motivation of prefix propagation

Router / Remote NFD

End Host / Local NFD

app1 app2 app3

register:
/ndn/ucla/alice/app2

register:
/ndn/ucla/alice/app1

register:
/ndn/ucla/bob/test/app3

register:
/ndn/ucla/alice

signed by:
/ndn/ucla/alice

register:
/ndn/ucla/bob

signed by:
/ndn/ucla/bob

* /ndn/ucla/alice
 /ndn/ucla/bob/
 /ndn/ucla/bob/test

Key-chain

Figure 2: An example of prefix propagation.

registered prefix from the remote RIB).
But not all RIB entries will trigger propagations /

revocations, e.g., entries 5 start with the NFD manage-
ment prefix (i.e., /localhost/nfd), and the entry repre-
sents the connectivity to the router (this will be dis-
cussed in detail later). Besides, due to prefix aggrega-
tion, the propagated entry may represent one or more
local RIB entries. So, on one hand, the intended propa-
gation should be abandoned if it has already been per-
formed in response to a previous local RIB insertion.
On the other hand, a propagated entry must be kept
until all represented RIB entries are erased.

If a propagation / revocation is proved to be neces-
sary, the corresponding propagated entry will be created
/ released. But there is some chances that no remote op-
erations, i.e. register / unregister the propagated prefix
to / from the remote RIB, will be set up immediately.
For revocation, no remote operation will be triggered

5these entires are registered for NFD mangement mod-
ules to receive NFD ControlCommands [3] and thus are re-
stricted for local use only.

unless the revoking propagation has succeeded. Cer-
tainly, if there is no connectivity to the router, no re-
mote operations should be set up immediately, but some
of them will be pending (see section 3.7).

To distinguish whether there is a connectivity to the
router, we define a link local nfd prefix as /local-
hop/nfd. When a connectivity between local NFD and
remote NFD is established6, the link local nfd pre-
fix will be registered to the local RIB. Correspondingly,
such an entry will be erased if the connectivity is lost.
Thereby, we can easily check the connectivity to the
router by inspecting the link local nfd prefix in the
local RIB. Besides, as mentioned above, the insertion /
deletion of the link local nfd prefix will not lead to
propagation / revocation, but can trigger other actions
(see section 3.7 for detail).

3.3 Who are involved in Propagation
There are three logic entities involved in propaga-

tion, the applications run on end hosts, the local NFD
and the remote NFD. Generally, the applications (i.e.,
producers) publish their Datas and listen to the corre-
sponding Interests by registering the names of Datas to
the local RIB via the local NFD. Then, the local NFD
propagates an aggregated prefix from those Data names
to the remote RIB via the channel between local NFD
and remote NFD. So as the revocation.

3.4 How to Secure Propagations
To ensure propagations are reliable, a proper trust

schema should be performed to secure propagations.

6How to establish such a connectivity is beyond this
memos’s scope and can be found otherwhere [4].

3

More specifically, the remote NFD will abandon the
received registration commands for propagations, un-
til the commands can pass the validation defined by
the trust schema. The key issue is how to enable the
router verify a command generated and signed
on a end host? According to the NDN trust schema [13],
the short answer would be having the command recur-
sively signed by one of the trust anchor of the router.

More specifically, there should be some data base, on
which a series of certificates are published. This data
base may or may not reside in the end host according to
the adopted management protocol7 of certificates. To
ensure a registration command for propagation be ver-
ified on the router, there are three basic requirements:
1) the certificate of the signing key of this command
must be recursively signed by one of the router’s trust
anchor; 2) all certificates along such signing path have
already published on the data base of certificates; 3)
the router can access the data base to fetch required
certificates. Besides, a series of formate rules can be
configured on the router to help validate the command
Interest as well as related certificate Datas.

Figure 3 shows an overview of such a trust schema.
When app3 register a prefix to the local NFD, the pre-
fix /ndn/ucla/bob is propagated to the remote NFD.
While the registration command is signed by the iden-
tity /ndn/ucla/bob, which is recursively signed by the
identity /ndn and the certificates of keys along the sign-
ing path have been published on the data base DB.
Thus, the registration command can be verified on the
router, as long as the end host can publish the certifi-
cate of /ndn/ucla/bob on DB, /ndn is set as one trust
anchor on the router and it can access DB to fetch the
certificates of /ndn/ucla/bob and /ndn/ucla. The cor-
responding validation process is simply demonstrated
on figure 4.

3.5 How to Maintain Propagated Entries
This issue can be divided into two parts: how to

maintain propagated entries on the router? and
how to maintain the propagated entries on the
end host?.

On the router, although the propagated entries have
been registered to the RIB, they, unlike other RIB en-
tries, are highly related to the status of the propaga-
tor (i.e., the end host). So, we propose to maintain the
propagated entries as soft states, such that they will ex-
pire automatically after a some duration. Consequently,
all propagated entries must be refreshed periodically to
keep them work.

While on the end host, the situation is more compli-
cated. As discussed in section 3.2, some propagations

7Some existing tools can be used to manage the certifi-
cates in our case, such as ndn-pib [7], ndns [5] and ndn-
repo-ng [8].

will not be performed if there is no connectivity to the
router. However, there indeed are needs to propagate
those prefixes, and they should be propagated immedi-
ately once the connectivity is activated. To this point,
we just ‘suspend‘ those propagations by maintaining the
corresponding entries as well, and ‘awake‘ them as long
as there is a available connectivity to the router.

On the other hand, when a required revocation can
not be performed due to connectivity problem, we will
still release the corresponding entry. With the propa-
gated entry released, the refresh process of this propa-
gation will also stop. Consequently, the registration on
the router’s RIB will then expire after some duration.

Besides, maintenance of propagated entries is also
useful to handler failures and deal with connectivity
changes (see next sections for more detail). Actually,
we design a state machine to describe different statuses
of a propagated entry, and when and how to transit be-
tween them. Figure 5 shows the core parts8 of the state
machine in a simple and intuitive way. While the detail
design and implementation of such a state machine will
be introduced later.

3.6 How to Handle Failures
To this issue, we adopt an exponential back-off re-

transmission strategy. When the propagation fails, i.e.,
the corresponding registration gets a faillure from the
router, it will be retried after a duration doubled each
retry until reaches the maximum waiting period. Once a
retry succeeds, the next retry waiting period will then
be set back to the initial value. Both the initial and
maximum waiting periods are configurable to users.

3.7 How to Deal With Connectivity Changes
No matter the connectivity (between the end host to

a router) is lost, established or recovered, there are in
total two atomic connectivity changes are involved: 1)
connects to a router and 2) disconnects from a router.
As mentioned in section 3.2, the link local nfd prefix
will work as a ‘alarm‘ of those connectivity changes.

On one hand, when the link local nfd prefix is
inserted into the RIB, it means there is a connectivity to
a router established or recovered. Then, we perform all
‘suspend‘ propagations, represented by the maintained
propagated entries, via the current connectivity.

On the other hand, the deletion of the link local nfd
prefix from the RIB indicates current connectivity to
the router was just lost. Then, until the lost connectiv-
ity is recovered or a new connectivity is established, it’s
unnecessary to perform any propagations nor revoca-
tions. Thus, any attempt for refresh or retry should be
abandoned. Moreover, newly triggered necessary prop-

8Invalid transitions, valid transitions but without neither
state switch nor action triggered, and the actions under state
switches are not presented.

4

Remote NFD

Local NFD

register:
/ndn/ucla/bob/test/app3

register:
/ndn/ucla/bob

signed by:
/ndn/ucla/bob* /ndn/ucla/alice

 /ndn/ucla/bob
 /ndn/ucla/bob/test

/ndn/KEY/ksk-1/ID-CERT/…
/ndn/ucla/KEY/ksk-1/ID-CERT/…
/ndn/ucla/KEY/bob/ksk-1/ID-CERT/…

app3

Data Base of Certificates

sign
sign

set trust anchor

publish certificate

Figure 3: trust schema.

/ndn/KEY/ksk-1/ID-CERT/…

/ndn/KEY/ksk-1

/ndn/ucla/KEY/bob/ksk-1/ID-CERT/…

/ndn/ucla/KEY/ksk-1/ID-CERT/…

/ndn/ucla/KEY/ksk-1

/ndn/ucla/KEY/bob/ksk-1

Command Interest

sign

sign

sign

key locator

key locator

key locator

fetch from DB

trust anchor

fetch from DB

Figure 4: verification process.

agations will only lead to creations of propagated entries
(but not any remote operations). So as newly triggered
revocations, which will only result in some propagated
entries’ being released.

3.8 How to Response to KeyChain changes
As discussed in section 3.1, the propagated prefixes

are highly related to the local key-chain owned by NRD.
Once the key-chain changes, some propagations will be
affected. Actually, the essential impact is previous se-
lected prefixes for propagations may not be the best any
more.

On one hand, for some propagated prefix, there may
exist a better choice after a shorter identity is inserted
to the key-chain. In this case, we will keep the propa-
gated prefix the current best choice. On the other hand,
the identity for some propagated prefix may be erased
from the key-chain. Consequently, the corresponding
propagation should be revoked, and its represented lo-
cal RIB entries should be re-performed to set up some
new propagations.

To prevent establishing a too close connection to the
security module, we propose to response to those key-
chain changes asynchronously. Namely, key-chain changes
will not directly affect propagated entries immediately,
and thus are not described in the propagated-entry state
machine. Instead, whenever a propagation is about to
be re-performed due to periodical refresh or retry, or as
is “awaken“ after connectivity establishment, the prop-
agated prefix is checked against the key-chain to see
whether it still works, i.e., is not only available but also

the current best choice. If it is, re-perform the propaga-
tion as expected. Otherwise, response to the key-chain
changes at this point as mentioned above.

4. REFERENCE IMPLEMENTATIONS
We implement the automatic prefix propagation fea-

ture as a separate module, AutoPrefixPropagator,
of NRD. As depicted in figure 6, it works in coopera-
tions with other two modules, Rib and RibManager,
of NRD, and two NRDs, run on the end host and the
router respectively, are involved to complete the prop-
agation process. So as the revocation.

Then, we will review the implementation in detail
with three logic parts: 1) public interfaces, 2) helpers
and 3) propagated-entry state machine.

4.1 Public Interfaces

4.1.1 Constructor
AutoPrefixPropagator(ndn :: nfd :: Controller& controller,

ndn :: KeyChain& keyChain,

Rib& rib)

When creating an instance of AutoPrefixPropa-
gator, three arguments are required: 1) a reference to
the NFD controller that used to send out commands for
propagation / revocation, 2) a reference to the key-chain
owned by the NRD that supplies identities, and 3) a ref-
erence to the managed RIB that maintains two impor-
tant signals, Rib::afterInsertEntry and Rib::afterEraseEntry,
will trigger propagations and revocations respectively.

5

released

rib erase rib eraserib erase rib erase

new

PROPAGATINGPROPAGATE_fail PROPAGATED

rib insert

hub connect hub disconnect

propagate fail

retry timer

propagate succeed

refresh timer

hub disconnect hub disconnect

revoke succeed

propagate succeed
(action: start revocation)

revoke succeed (action: start propagation)

Figure 5: Overview of the propagated entry state machine

4.1.2 loadConfig
void

loadConfig(const ConfigSection& configSection)

This method is invoked when the RibManager is
loading configurations from a specified NFD config file [2]
at the rib section. While all propagation-related pa-
rameters are configured at the rib.auto prefix propagate
subsection, which is loaded, parsed and then passed by
to this method.

Table 1 presents the common parameters shared by
all propagations, some of which are configurable and are
actually set or modified in this method when loading
configurations.

4.1.3 enable
void

enable()

This method is invoked by the RibManager to en-
able the automatic prefix propagation feature.

To achieve this, the method afterInsertRibEntry9 is
connected to the signal Rib::afterInsertEntry, which is
emitted after an RIB entry was inserted. Correspond-
ingly, another method afterEraseRibEntry is connected
to Rib::afterEraseEntry, which is emitted after an ex-
isting RIB entry was erased.

4.1.4 disable

9All methods of AutoPrefixPropagator are referred
to without specifying the namespace.

void

disable()

In contrast with enable, those two signal connections
are released to disable the feature of automatic prefix
propagation.

4.2 Propagation Helpers

4.2.1 getPrefixPropagationParameters
PrefixPropagationParameters

getPrefixPropagationParameters(const Name& localRibPrefix)

The return value, PrefixPropagationParameters,
is a structure that could be used by the registration
commands for prefix propagations / revocations. It con-
sists an instance of ControlParameters (parameters)
and an instance of CommandOptions (options), as
well as a bool variable (isValid) indicates whether this
set of parameters is valid (i.e., the signing identity ex-
ists).

This method is invoked to get the required parame-
ters for prefix propagation. given a local RIB prefix lo-
calRibPrefix, find out, in local key-chain, a proper iden-
tity whose namespace covers the input prefix. If there
is no desired identity, return a invalid PrefixPropaga-
tionParameters. Otherwise, set the selected identity
as the signing identity of options. Meanwhile, set this
identity (or its prefix with the last component elimi-
nated if it ends with ‘nrd‘) as the name of parameters.

4.2.2 doesCurrentPropagatedPrefixWork

6

Rib AutoPrefixPropagator Controller RibManager
0: insert()

1: afterInsertRibEntry()

1: afterInsertEntry()

2: getPrefixPropagationParameters()

3: afterRibInsert()

5: start() 6: startCommand()

7: onLocalhopRequest()

ValidatorConfig

8: validate()

9: onCommandValidated()

10: registerEntry()

11: sendSuccessResponse()

12: processCommandResponse()
13: afterPropagateSucceed()

local NRD remote NRD

4: startPropagation()

14: onRefreshTimer()

15: redoPropagation()
refresh interval

Figure 6: Simplified work flow of successful propagation

Table 1: Shared parameteres for prefix propagation.

member variablea default setting configurableb

m controlParameters

Cost 15 YES

Origin ndn::nfd::ROUTE ORIGIN CLIENT NO

FaceId 0 NO

m commandOptions
Prefix /localhop/nfd NO

Timeout 10,000 (milliseconds) YES

m refreshIntervalc 25 (seconds) YES

m baseRetryWait 50 (seconds) YES

m maxRetryWait 3600 (seconds) YES

athese parameters are maintained in some member variables of AutoPrefixPropagator.
bindicates whether this parameter can be configured in the NFD config file.
cthis setting must be less than the idle time of UDP faces whose default setting is 3,600 seconds.

bool

doesCurrentPropagatedPrefixWork(const Name& prefix)

This method is invoked before re-perform some prop-
agation to check whether current propagated prefix still
works. A propagated prefix still works if and only if the
identity corresponding to this prefix still exists in the
key-chain, and there is no shorter identity that covers
this prefix. Otherwise, either current siging identity
can not be found, or a better choice exists and should
be adopted then.

4.2.3 redoPropagation
void

redoPropagation(PropagatedEntryIt entryIt,

const ControlParameters& parameters,

const CommandOptions& options,

time :: seconds retryWaitT ime)

This method is invoked to refresh a successful prop-
agation, to retry a failed propagation, or to awake a
suspend propagation. No matter for which purpose, the
propagation for the input propagated entry is performed
with the input ControlParameters, CommandOp-
tions and current setting of waiting period before retry,

7

as long as its propagated prefix still works (determined
by doesCurrentPropagatedPrefixWork). Otherwise, the
input propagated entry will be erased, while all local
RIB entries represented by it will be re-handled to set
up required propagations.

4.2.4 startPropagation
void

startPropagation(const ControlParameters& parameters,

const CommandOptions& options,

time :: seconds retryWaitT ime)

This method is invoked to send out the registration
command for a propagation with input parameters. Two
callbacks, afterPropagateSucceed and afterPropagateFail,
are assigned for the case when the propagation succeeds,
and the case when the propagation fails respectively.

Before sending out the command, two events, for re-
fresh and retry respectively, are created (but not sched-
uled at this point) and passed by as arguments to those
two callbacks, afterPropagateSucceed and afterPropa-
gateFail respectively.

The retry event requires an argument to define the
waiting period before next retry, which is calculated ac-
cording to the back-off policy based on current waiting
period (retryWaitTime) and m maxRetryWait.

4.2.5 startRevocation
void

startRevocation(const ControlParameters& parameters,

const CommandOptions& options,

time :: seconds retryWaitT ime)

This method is invoked to send out the unregistra-
tion command for revoking a propagation with input
parameters. Two callbacks, afterRevokeSucceed and af-
terRevokeFail, are assigned for the case when the revo-
cation succeeds, and the case when the revocation fails
respectively.

4.2.6 afterInsertRibEntry
void

afterInsertRibEntry(const Name& prefix)

This method is invoked once the signal Rib::afterInsertEntry
is emitted. As discussed in section 3.2, not all rib entry
insertions will lead to necessary propagations. Actually,
the process is abandoned if the local RIB entry whose
insertions trigger this invoking is scoped for local use
only (i.e., the name of that RIB entry,prefix, starts with
/localhost). On the other hand, if prefix is just the link
local nfd prefix, i.e., this invoking is triggered by es-
tablishing a connectivity to the router, afterHubConnect
is invoked to awake all suspended propagations.

Even though prefix represents a RIB entry that can
trigger propagation, the triggered propagation may be
unnecessary, if there is no valid PrefixPropagation-
Parameters found for this entry, or the propagation

has already been processed.
Then, if there is a necessary propagation triggered,

afterRibInsert is invoked to process this request further.

4.2.7 afterEraseRibEntry
void

afterEraseRibEntry(const Name& prefix)

Similar to afterInsertRibEntry, this method is invoked
once the signal Rib::afterEraseEntry is emitted. If pre-
fix, the name of the local RIB entry whose deletion trig-
gers this invoking, is scoped for local use only, this in-
voking terminates immediately. While if this invoking if
triggered by the deletion of the link local nfd prefix,
i.e., the connectivity to the router was lost, afterHub-
Disconnect is invoked then to suspend all propagations
by canceling their scheduled retry / refresh events. In
all other cases, a revocation will be required.

However, if the there is no valid PrefixPropaga-
tionParameters found, the required revocation will
not be performed. Besides, if the propagation to be
revoked has not succeeded yet, or the corresponding
propagated entry should be kept for other RIB entries,
the required revocation will also be abandoned.

At last, if a revocation is really required to be per-
formed, afterRibErase is invoked then.

4.3 Propagated-entry State Machine
Before go deep into the state machine, we introduce

the propagated entry first. A propagated entry consists
of a PropagationStatus indicates current state of this
entry, as well as an event could be scheduled for either
refresh or retry. Besides, it stores a copy of the signing
identity for this entry. All propagated entries are main-
tained as a un-ordered map (m propagatedEntries), where
the propagated prefix is used as the key to retrive the
corresponding entry.

More specifically, a propagated entry will stay in one
of the following five states in logic.

• NEW, the initial state.

• PROPAGATING, the state when the correspond-
ing propagation is being processed but the response
is not back yet.

• PROPAGATED, the state when the corresponding
propagation has succeeded.

• PROPAGATE FAIL, the state when the correspond-
ing propagation has failed.

• RELEASED, indicates this entry has been released.
It’s noteworthy that this state is not required to
be explicitly implemented, because it can be easily
determined by checking whether an existing entry

8

can still be accessed. Thus, any entry to be re-
leased is directly erased from the list of propagated
entries.

Given a propagated entry, there are a series of events
that can lead to a transition with a state switch from
one to another, or some triggered actions, or even both
of them. All related input events are listed below.

• rib insert, corresponds to afterRibInsert, which hap-
pens when the insertion of a RIB entry triggers a
necessary propagation.

• rib erase, corresponds to afterRibErase, which hap-
pens when the deletion of a RIB entry triggers a
necessary revocation.

• hub connect, corresponds to afterHubConnect, which
happens when the connectivity to a router is es-
tablished (or recovered).

• hub disconnect, corresponds to afterHubDisconnect,
which happens when the connectivity to the router
is lost.

• propagate succeed, corresponds to afterPropagate-
Succeed, which happens when the propagation suc-
ceeds on the router.

• propagate fail, corresponds to afterPropagateFail,
which happens when a failure is reported in re-
sponse to the registration command for propaga-
tion.

• revoke succeed, corresponds to afterRevokeSucceed,
which happens when the revocation of some prop-
agation succeeds on the router.

• revoke fail, corresponds to afterRevokeFail, which
happens when a failure is reported in response to
the unregistration command for revocation.

• refresh timer, corresponds to onRefreshTimer, which
happens when the timer scheduled to refresh some
propagation is fired.

• retry timer, corresponds to onRetryTimer, which
happens when the timer scheduled to retry some
propagation is fired.

A state machine is implemented to maintain and di-
rect transitions according to the input events. Figure 7
lists all related events and the corresponding transi-
tions.

Then, we will review all corresponding methods.

4.3.1 afterRibInsert
void

afterRibInsert(const ControlParameters& parameters,

const CommandOptions& options)

Once this event happens, a new propagated entry will
be created, i.e., from RELEASED to NEW. If there is
a active connectivity to the router, startPropagation is
invoked to perform this propagation, and the state of
the created entry is further switched to PROPAGAT-
ING. Otherwise, this propagation will be suspended.
The retry waiting period is set to m baseRetryWait.

4.3.2 afterRibErase
void

afterRibErase(const ControlParameters& parameters,

const CommandOptions& options)

Once this event happens, the propagated entry will be
erased, i.e., switched to RELEASED. Besides, if there
is a active connectivity and the corresponding propa-
gated entry has succeeded, startRevocation is invoked
to revoke this propagation. Since the Cost filed of pa-
rameters is default set, it should be unset to adapt to
the unregistration command.

4.3.3 afterHubConnect
void

afterHubConnect()

Once this event happens, all suspended propagations
are awaken by invoking redoPropagation for each of
them.

4.3.4 afterHubDisconnect
void

afterHubDisconnect()

Once this event happens, all propagations are sus-
pended by initializing their corresponding propagated
entries.

4.3.5 afterPropagateSucceed
void

afterPropagateSucceed(const ControlParameters& parameters,

const CommandOptions& options,

const Scheduler :: Event& refreshEvent)

When this event happens, beside the PROPAGAT-
ING sate, the propagated entry may also be in the RE-
LEASED state, because this entry may be erased due
to revocation before the result of this propagation gets
back.

If the propagated entry does not exist (i.e., in the RE-
LEASED state), an unregistration command is sent im-
mediately to revoke this propagation. Actually, a copy
of parameters is made and passed by to startRevocation
with the Cost filed unset.

9

rib insert

rib erase

hub connect

hub disconnect

propagate succeed

propagate fail

revoke succeed

revoke fail

refresh timer

retry timer

logically
IMPOSSIBLE

-> RELEASED

-> PROPAGATING

start propagation

logically
IMPOSSIBLE

logically
IMPOSSIBLE

NEW

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED

logically
IMPOSSIBLE

-> NEW

-> PROPAGATED

set refresh timer

PROPAGATING

-> PROPAGATE_FAIL

set retry timer

 PROPAGATING

start propagation

 PROPAGATING

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED
start revocation

cancel refresh timer

logically
IMPOSSIBLE

-> NEW

logically
IMPOSSIBLE

PROPAGATED

logically
IMPOSSIBLE

-> PROPAGATING

start propagation

 PROPAGATED

-> PROPAGATING

start propagation

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED

cancel retry timer

logically
IMPOSSIBLE

-> NEW

logically
IMPOSSIBLE

PROPAGATE_FAIL

logically
IMPOSSIBLE

PROPAGATE_FAIL

PROPAGATE_FAIL

logically
IMPOSSIBLE

-> PROPAGATING

start propagation

-> NEW

logically
IMPOSSIBLE

RELEASED

RELEASED

RELEASED

start revocation

RELEASED

RELEASED

RELEASED

RELEASED

logically
IMPOSSIBLE

logically
IMPOSSIBLE

Figure 7: The transition table of propagated-entry state machine.

While if the state of the propagated entry is PROP-
AGATING, it should be switched to PROPAGATED,
and the refresh event refreshEvent is scheduled to redo
this propagation after a duration (m refreshInterval).

4.3.6 afterPropagateFail
void

afterPropagateFail(uint32 t code,

const std :: string& reason,

const ControlParameters& parameters,

const CommandOptions& options,

time :: seconds retryWaitT ime,

const Scheduler :: Event& retryEvent)

When this event happens, beside the RELEASED
state, the propagated entry may also be in the PROPA-
GATING state, because the same prefix may be propa-
gated by other local RIB entry before the result of this
revocation gets back.

If the propagated entry still exists, its state is switched
to PROPAGATE FAIL, and the retry event retryEvent
is scheduled to redo this propagation after a duration

defined by current waiting period for retry retryWait-
Time.

4.3.7 afterRevokeSucceed
void

afterRevokeSucceed(const ControlParameters& parameters,

const CommandOptions& options,

time :: seconds retryWaitT ime,

)

When this event happens, beside the RELEASED
state, the propagated entry may also be in any states
expect the NEW state. Because the same prefix may be
propagated by other local RIB entry before the result of
this revocation gets back (PROPAGATING), and the
result of that propagation may be back earlier (PROP-
AGATED or PROPAGATE FAIL).

If the propagated entry is in the PROPAGATING
state or the PROPAGATED state, startPropagation will
be invoked, since the propagation on the router has been
revoked but it should be kept in this case. As param-

10

eters is used for revocation (i.e., the Cost filed is not
set), a copy of it is made and passed by to startPropaga-
tion with the Cost set as that of m controlParameters.

4.3.8 afterRevokeFail
void

afterRevokeFail(uint32 t code,

const std :: string& reason,

const ControlParameters& parameters,

const CommandOptions& options)

When this event happens, the propagated entry stay
in whatever state it is in, and nothing need to do in this
case.

4.3.9 onRefreshTimer
void

onRefreshTimer(const ControlParameters& parameters,

const CommandOptions& options)

When this event happens, the propagated entry must
be in the PROPAGATED state. The redoPropagation
is invoked to handle this refresh request.

4.3.10 onRetryTimer
void

onRetryTimer(const ControlParameters& parameters,

const CommandOptions& options,

time :: seconds retryWaitT ime,

)

When this event happens, the propagated entry must
be in the PROPAGATE FAIL state. The redoPropaga-
tion is invoked to handle this retry request.

5. A BRIEF INSTRUCTION
In this section, we present a brief instruction with a

simple example.

5.1 test environment
Two virtual machines are set up. One works as the

end host whose IP address is host ip, while the other
works as the router whose IP address is router ip. Be-
sides, we run repo-ng as a data base of certificates on
the host.

5.2 configure the end host
Firstly, start NFD with the config file host.nfd.conf.

host.nfd.conf
rib

{
auto prefix propagate

{
cost 15
timeout 10000
refresh interval 300
base retry wait 50

max retry wait 3600

}
}

Then, start the repo-ng with the config file repo.conf.
repo.conf
repo

{
data

{
prefix /ndn

}
command

{
prefix ””

}
storage

{
method sqlite

path .

max− packets 100

}
tcp bulk insert

{
host localhost
port 9527

}
validator

{
trust− anchor

{
type any

}
}
}

At last, create the key-chain shown in figure 4, and
publish their certificates onto the repo-ng. Then, ex-
port the certificate of /ndn on the host, transfer it to
the router.

5.3 configure the router
Start NFD on the router with the config file router.nfd.conf.
Set the router’s trust anchor to /ndn. i.e., copy the

file of certificate of /ndn (received from the end host) to
whatever configured at rib.localhop security.trust-anchor.file-
name.

5.4 establish connectivity
On the router, run the following command to start

the autoreg-server with prefix /ndn automatically reg-
istered when a new on-demand Face is created, such
that the router can forward all prefixes start with /ndn
to the host once the connectivity from the host to the
router is established.

nfd− autoreg −−prefix = /ndn

On the host, run the following command to get con-
nectivity to the router.

11

router.nfd.conf
rib

{
localhop security

{
rule

{
id ”NRD Prefix Registration Command Rule”

for interest

filter

{
type name

regex ∧[< localhop >< localhost >] < nfd >< rib > [< register >< unregister >] <> $

}
checker

{
type customized

sig− type rsa − sha256

key− locator

{
type name

regex ∧[∧ < KEY >]∗ < KEY ><> ∗[< ksk − .∗ >] < ID − CERT > $

}
}
}
rule

{
id ”NDN Testbed Hierarchy Rule”

for data

filter

{
type name

regex ∧[∧ < KEY >]∗ < KEY ><> ∗[< ksk − .∗ >] < ID − CERT ><> ∗$
}
checker

{
type customized

sig− type rsa − sha256

key− locator

{
type name

regex ∧[∧ < KEY >]∗ < KEY ><> ∗[< ksk − .∗ >] < ID − CERT > $

}
}
}
trust− anchor

{
type file

file− name anchor .cert

}
}
}

12

nfdc register ndn : /localhop/nfd udp4 : // < router ip >: 6363

5.5 start test
On the router, inspect the RIB to ensure there is no

entry with the name /ndn.
On the host, run the following command to register

a prefix /sample/ndn/ucla/bob/test to the NFD.

ndnpingserver /ndn/ucla/bob/test

Then, wait for a few seconds and inspect the RIB on
the router. There should be a prefix /ndn propagated
from the end host.

6. CONCLUSION
In this memo, we propose the Automatic Prefix Prop-

agation, that enables the end host spread some knowl-
edge of local prefix registrations to the connected router
automatically. The propagated prefix is selected with
reasonable aggregation, while all propagated entries are
maintained according to a specified state machine, han-
dling propagation failures and connectivity changes ef-
ficiently.

7. REFERENCES
[1] Command Interests. http://redmine.named-

data.net/projects/nfd/wiki/Command_Interests.
[2] Config file format. http://redmine.named-

data.net/projects/nfd/wiki/ConfigFileFormat.
[3] Control Command. http://redmine.named-

data.net/projects/nfd/wiki/ControlCommand.
[4] ndn-autoconfig. http://named-

data.net/doc/NFD/current/manpages/ndn-
autoconfig.html.

[5] ndns. https://github.com/named-data/ndns.
[6] NRD (NFD RIB Daemon). http://named-

data.net/doc/NFD/current/manpages/nrd.html.
[7] Public key Info Base (PIB) Service. http:

//redmine.named-data.net/projects/ndn-
cxx/wiki/PublicKey_Info_Base.

[8] Repo protocol and repo-ng.
http://redmine.named-
data.net/projects/repo-ng/wiki.

[9] RIB Management. http://redmine.named-
data.net/projects/nfd/wiki/RibMgmt.

[10] A. Afanasyev, J. Shi, B. Zhang, L. Zhang,
I. Moiseenko, Y. Yu, W. Shang, Y. Huang, J. P.
Abraham, S. DiBenedetto, et al. Nfd
developerâĂŹs guide. Technical report, Technical
Report NDN-0021, NDN, 2014.

[11] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang,
L. Zhang, and L. Wang. Nlsr: named-data link

state routing protocol. In Proceedings of the 3rd
ACM SIGCOMM workshop on
Information-centric networking, pages 15–20.
ACM, 2013.

[12] F. Papadopoulos, D. Krioukov, M. Bogua, and
A. Vahdat. Greedy forwarding in dynamic
scale-free networks embedded in hyperbolic metric
spaces. In 2010 Proceedings IEEE INFOCOM.

[13] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, and
L. Zhang. Schematizing and automating trust in
named data networking.

[14] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D.
Thornton, D. K. Smetters, B. Zhang, G. Tsudik,
D. Massey, C. Papadopoulos, et al. Named data
networking (ndn) project. Relatório Técnico
NDN-0001, Xerox Palo Alto Research
Center-PARC, 2010.

13

