Congestion Control — Design Specifics

1. Congestion Detection

At each router: Use the estimator and setpoint of CoDel (https://datatracker.ietf.org/doc/draft-
ietf-aqm-codel/), which records the “packet sojourn time”.

In the following, we will use the term queue size to refer to the time that
the sojourn time remained above the target value (default: 5 ms). We will
consider a link as “congested” when this time is above the interval (default:
100 ms).

We do not use CoDel’s control loop (spacing out packet drops), but instead
implement our own.

2. Congestion Signaling

At each router, on each incoming data packet:

1. Check the packet tag contains a queue size entry. Call it tagQueueSize

2. For each downstream face (PIT entry where the data packet will be
sent):

e Look up its own queue size, called localQueueSize.

o If there is an error (e.g., the router doesn’t use the codel AQM),
set localQueueSize = -1;

« replace the packet tag with MAX(tagQueueSize, localQueueSize)
and send it to the downstream.

3. Reaction at the Consumer
Implement a TCP RENO like behavior that uses “slow start” and congestion
avoidance. The value “sstresh” starts out as sufficiently high.

On each incoming data packet:

If (tagQueueSize > 0):
If (NOT markedRecently):
sstresh = cwnd/2.0;



cwnd = sstresh;

lastMarkedSeq = thisSeq;
Else:

cwnd -= 1.0/cwnd;

Else:
If (cwnd <= sstresh):
cwnd++;
Else:
cwnd += 1.0/cwnd;
End

Explanation of the pseudocode: For the first marked packet, the consumer
performs a multiplicative decrease. Then for a time “markedRecently” (de-
fault: 1.1 * RTT), the consumer prohibits multiplicative decreases on marked
packets and instead performs a linear decrease (alternative: keep cwnd the
same).

For each unmarked packet, the consumer either performs an exponential
increase (when in the slow start phase), or an additive increase (after the
slow start phase).

When receiving a timeout set sstresh=cwnd/2.0 and cwnd=1;

When receiving a congestion NACK (indicating that the requested packet
was dropped), the behavior is the same as on receiving a timeout.

The consumer should set its timer to a value high enough to avoid false
positive timeouts (e.g. 5 seconds). Timers can be set rather too high than
too low, because when the network is operating properly, timeouts should
not occur (NACKs should also be rare). Moreover, thanks to the packet
marks, timeouts are no longer needed to adjust the congestion window.

The router buffers inside the network should be chosen large enough to
absorb any temporary traffic bursts and, in the worst case, send an explicit
NACK instead of silently dropping packets.

4. Multipath Forwarding Strategy
4.1. Simple Design

For each FIB prefix: Keep a map<FaceId, bool disabled> that indicates
whether the current interface is disabled due to congestion on the link.



On each incoming data packet:

If (tagQueueSize > 0):
disableFace(Prefix, incomingFaceId)
Else:
enableFace(Prefix, incomingFaceId)
End

On each incoming interest packet:

o Create a list of eligible faces (ones that are not deactivated)

o Forward packet randomly on one of the faces (equal forwarding proba-
bility)

o If all faces are disabled: Choose face randomly among disabled faces
(equal probability)

The problem of this simple forwarding strategy is that there is a latency
of one link propagation delay between the upstream router marking a face
as congested and the downstream router setting its state to congested (or
vice versa with removing the congestion marks). Completely avoiding one
interface during that time tends to underutilize the link. Thus, the following
forwarding strategies change the forwarding ratio more slowly.

4.2. Carofiglio et al’s Forwarding Strategy

Here we adjust the forwarding ratio in order the equalize the number of out-
standing interests, as suggested in http://www.inf.usi.ch/phd/papalini/pdf/icnp13.pdf
and implemented here: http://systemx.enst.fr/archives/NDN-0.2.0-
custom.tgz

As Nguyen et al. (http://ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=7247397&tag=1)
pointed out, “Pl-based forwarding prefers routes with narrower available

bandwidth which is counter-intuitive if we consider throughput maximization

as the objective.”

In my measurements, the PI-based distribution could not achieve the optimal
combined link bandwidth on heterogeneous paths: If the paths had a link
bandwidth ratio of 75:25, the strategy split traffic only to about 60:40.

Disclaimer: The non-optimal split ratio may be caused by my re-
implementation (I ported their forwarding strategy to ndnSIM), rather than
an inherent design flaw.



4.3 Main Forwarding Strategy Design
Per FIB Prefix:

e Keep a map<Faceld, double forwPerc> forwPercMap for the for-
warding percentages of each interface. Initialize this map to either an
equal split, or 100% for the best interface (e.g. shortest path) and 0%
for all others.

o Keep a map<Faceld, Markings> markingPercMap, where “Markings”
are a list of boolean values, with a function to compute the moving
average (between 0 and 1).

On each incoming data packet:

If (tagQueueSize > 0):
markPercMap.add(inFaceld, true)
Else:
markPercMap.add(inFaceld, false)
End

Every forwarding update interval (default: 20 ms - 200 ms):

e Reduce forwarding percentage of the face with the most markings
(default: by 1% to 3%)

o Increase forwarding percentage of all other faces equally (so the sum
remains 100%)

e clear markings of all faces.

On each incoming interest:

e Forward packets probabilistically based on forwPercMap.

Extension: Suppress Marks State When starting with a suboptimal
forwarding distribution, the consumer might receive marks (thus reduce its
sending rate) even though a better alternative link is available at one router.
To prevent an unnecessary window decrease, we introduce a “suppress marks”
state, where incoming marks are not relayed further downstream if a better
path is available.

During the forwarding update procedure (each fw update interval):



If there exists an eligible face without 0% marks during the last interval:
set supprMarks = true;
End

On incoming data:

If (supprMarks == true):
// Ignore queue size of tag, but not local queue size
tagQueueSize = 0;

End

Problem: Adapting the forwarding ratio is quite slow (can be in the order of
seconds until the optimal ratio is achieved). This keeps the consumer too
long in the “slow start” phase, thus causes an unnecessary amount of interest
in router queues.

Solution: ?

Draft 1 — Klaus Schneider



	Congestion Control – Design Specifics
	1. Congestion Detection
	2. Congestion Signaling
	3. Reaction at the Consumer
	4. Multipath Forwarding Strategy
	4.1. Simple Design
	4.2. Carofiglio et al's Forwarding Strategy
	4.3 Main Forwarding Strategy Design



