
Implementing TCP-CUBIC in NDN

Shuo Yang

TCP-CUBIC Overview

TCP-CUBIC is an improvement over TCP-BIC in the way that while retaining most of strengths of BIC (espe-
cially, its stability and scalability under high BDP networks), it simplifies the window control function, enhances its
TCP friendliness and achieves better RTT fairness. CUBIC also performs better under small BDP networks while
BIC can still be too aggressive for TCP under short RTT or small BDP networks.

The window growth function of CUBIC is a function of elapsed time since the last packet loss event:

W (t) = C(t−K)3 +Wmax

K =
3

√
Wmaxβ

C

C is a constant scaling factor with default value of 0.4, β is the multiplicative decrease factor after a packet loss
event, its default value is 0.2, and Wmax is the window size just before the last window reduction. Here K represents
the time period needed to increase W to Wmax.

CUBIC Algorithm

1



Algorithm 1 TCP CUBIC algorithm for NDN

1: procedure Init() . CUBIC initialization
2: tcp friendliness← true, β ← 0.2
3: fast convergence← true, C ← 0.4
4: CubicReset()

5:

6: procedure OnData() . Data packets act as selective acknowledgement of Interest packets
7: if min rtt then min rtt← min(min rtt, RTT )
8: else min rtt← RTT
9: if cwnd ≤ ssthresh then

10: cwnd← cwnd+ 1 . slow start
11: else
12: CubicUpdate() . congestion avoidance

13:

14: procedure OnPacketLoss() . Indicated either by timeouts or NACKs
15: epoch start← 0
16: if cwnd < Wlast max & fast convergence then
17: Wlast max ← cwnd ∗ 2−β

2 . release more bandwidth for new flows to catch up
18: else
19: Wlast max ← cwnd

20: cwnd← cwnd ∗ (1− β)
21: ssthresh← cwnd
22:

23: procedure CubicUpdate() . Update congestion window
24: if epoch start ≤ 0 then
25: epoch start← current time
26: if cwnd < Wlast max then

27: K ← 3

√
Wlast max−cwnd

C . k is in second

28: origin point←Wlast max

29: else
30: K ← 0
31: origin point← cwnd

32: Wtcp ← cwnd

33: t← current time+min rtt− epoch start . t is in second
34: target← origin point+ C(t−K)3 . calculate W (t+ rtt)
35: if target > cwnd then
36: cwnd update← cwnd+ target−cwnd

cwnd
37: else
38: cwnd update← cwnd+ 0.01

cwnd . only a small increment

39: if tcp friendliness then . make sure window grows at least at the speed of TCP
40: Wtcp ←Wtcp + 3β

2−β ∗
t

RTT
41: if Wtcp > cwnd & Wtcp > target then

42: cwnd update← cwnd+
Wtcp−cwnd

cwnd

43: cwnd← cwnd update . update window size

44:

45: procedure CubicReset() . Reset state variables
46: Wlast max ← 0, epoch start← 0, origin point← 0
47: min rtt← 0 Wtcp ← 0, K ← 0, ssthresh←MAX INT

2



Implementation Challenges

The implementation we can refer to is the one implemented in Linux kernel (http://lxr.linux.no/linux/
net/ipv4/tcp_cubic.c). It’s quite hard to get because it uses a bunch of scaling factors and performs complex
unit conversions. I think it’s because Linux kernel doesn’t allow floating point operations. Since we are going to
implement CUBIC in user mode, it’s not a problem. But the concern is that floating point operations may introduce
numerical stability. At the bottom line, we can still mimic the kernel’s implementation by using scaling factors.

Test Scenarios

Topology Bottleneck Link Bandwidth Flows Purposes
Linear topology 5Mbps single CUBIC flow how CUBIC performs under low

BDP network
Linear topology 100Mbps single CUBIC flow how CUBIC performs under high

BDP network
Dumbbell topology 100Mbps two CUBIC flows see how fast two flow converges
Dumbbell topology 100Mbps one CUBIC flow

and one TCP-Reno
flow

test intra-protocol fairness

References

Original CUBIC paper: http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
CUBIC implementation in ns-3: http://web.cs.wpi.edu/~rek/Research/Papers/WNS3_14.pdf
CUBIC implementation in Linux kernel: http://lxr.linux.no/linux/net/ipv4/tcp_cubic.c

3

http://lxr.linux.no/linux/net/ipv4/tcp_cubic.c
http://lxr.linux.no/linux/net/ipv4/tcp_cubic.c
http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
http://web.cs.wpi.edu/~rek/Research/Papers/WNS3_14.pdf
http://lxr.linux.no/linux/net/ipv4/tcp_cubic.c

