
Specification for NACK Behavior in NLSR

Nick Gordon

October 28, 2016

Abstract

This document describes what behavior NLSR should take when re-
ceiving NACKS. The optimal behavior differs from case to case. All im-
portant cases are given here.

1 Introduction

There are multiple cases to consider with respect to Interest type when describ-
ing NLSR’s optimal behavior with regards to NACK processing. Generally,
there are two broad strategies. We identify five different NACK situations and
the responses for each. Further, in each case, the mention of logging implies a
higher level than normal; all important operations of the code generally emit
log messages.

It is also important to consider that if NLSR receives a NACK, then all of
the outgoing Faces have been NACKed, not just one.

It is important to note that “congestion” as a NACK reason has not been
implemented yet. As such, we have elected to treat it as part of “no reason”
until the semantics and scenarios associated with it are established.

Finally, all situations have a default of logging the NACK and its context
and do nothing else.

2 LSA, key, and validator Interests

This is the most detailed case. They are:

• No route: This may be caused by a link failure, and so does not represent
a total failure of routing; if some Face is destroyed, that will be reflected
in adj. LSAs and reactions will propagate accordingly. In the case that
we have no route, we should wait 60 seconds, giving NFD plenty of time
to recover the link, and then resend. There should be a retry limit of 3.

• Duplicate: We should resend the Interest with a limit of 3 in the case we
get a duplicate NACK. Of note is that it is impossible to have an Interest
sent with multicast strategy return a “duplicate” NACK at every Face

1



at its originating router. Hence, it is likely that “duplicate” NACKs will
obscure a more severe NACK. Using the figure, if A sends an Interest for
data that is located at F, and the Interest directly from A arrives at D
first, then D will “duplicate” NACK the Interests as they arrive through
C and E. A’s strategy will wait until the Face to D either receives a NACK
or data. Then, when D NACKs A’s Interest as “no route” because the
Face to F is down, the multicast strategy will select the least severe NACK
to return to NLSR, here “duplicate.” This prevents us from being able to
handle more severe NACKs that are the true issue.

A

C

D

E

F
No route

Duplicate

Duplicate

Duplicate
Duplicate

Figure 1: A
situation in which NACK loss can happen.

• No reason: Nothing can be done about this NACK. We should log the
NACK message and its context (i.e. the function name that execution is
currently in, the logical “task” that the code is performing, etc.), but do
nothing else.

3 Hello Interests

This is the second interesting case. However, we note that only two cases can
occur. That is, only the “No route” and “No reason” NACKs are possible:

• No route: A NACK with this reason for a Hello Interest indicates that
NLSR is down on that router or that the link out of this router is down.
That is, NFD has gotten the Interest, but does not know where to forward
it. This will only happen if NLSR’s prefixes are damaged or not registered
altogether. We should emit a particular error message and treat that
neighbor as down. We will retry as normal at the next Hello interval.

• No reason: The same strategy that is taken in the LSA case is taken here.

2



4 Sync Interests

Sync should probably log and otherwise ignore all NACKs gotten. This is
a practical reason, as NLSR currently uses a forked version of ChronoSync.
Currently, the original ChronoSync does not process NACKs, either, and so we
do not want to write patches for outdated code that will be obviated by a merge
back, anyway.

5 FaceStatus Dataset

When NLSR starts, it requests a FaceStatus dataset from NFD, which theoret-
ically provides the information NLSR needs to configure its neighbors. In the
case that NLSR cannot fetch this dataset, the response should be the same for
all NACK reasons; do nothing. This is because NLSR is also listening to the
FaceEvent stream, and will get Face information as it as added to NFD. Addi-
tionally, NLSR will refetch the dataset at long intervals of typically an hour, to
catch the cases where NFD Face events get lost for some reason.

6 Nlsrc

In the case of Nlsrc-originating interests, we should only emit errors for the op-
erator. This is because nlsrc, as a command-line utility, should not autoresolve
issues like this. These are the NACK reasons:

• No route: In this case, NLSR is not running on the localhost, and so we
should log an appropriate error, but do nothing else.

• No reason: We should log some kind of error, but do nothing else.

7 Centralized Layout

It is clear that the responses are similar or even identical across multiple scenar-
ios. As such, it is ideal to implement a handler that can act as an intermediary
between NLSR modules and the NACK return. This will permit lightweight
refactoring of the responses that NLSR functions can take, and centralize their
definitions for readability and maintenance.

Such a system requires a degree of modularity on the part of NLSR and the
methods that provoke NACK situations; they need to be callable independently
or mostly independently of their original context, so that the handler has liberty
to recover and act accordingly. Then, after operations terminate, to return
control to the function that triggered the NACK.

3


