

NDN over Wi-Fi Direct for Linux
Amar Chandole

Department of Computer Science, University of California, Los Angeles
amar.chandole@cs.ucla.edu

ABSTRACT
This project report outlines the work done in the
development of a protocol that lets a Linux
machine with Wi-Fi Direct capabilities talk to
other Linux devices using Wi-Fi Direct standard
[1] using Named Data Networking (NDN) [2].
The project has two main parts - first is to
achieve a stable connection between the two
devices at a link layer level, second being
developing the protocol that works with the
NFDs [3] on both the sides to help the connected
nodes share the prefixes they serve, can connect
to or wish to have. The project report currently
focuses on single-hop communication but has a
design that can be easily extended to multi-hop
communication later.
 The protocol uses naming rules for the
prefixes that are consistent with those used in
NDN Over Wi-Fi Direct for Android protocol [4]
to facilitate interoperability between Linux and
Android in the very near future. While now there
is an immediate use-case of users who wish to
use NDN applications and communicate to other
local Linux devices, the long-term goal is to
support seamless communication between any
two devices, irrespective of the operating system
they use. Implementation of the protocol resulted
in a stable communication. The details of the
protocol and the future challenges will be
explored in this report.

Keywords
NDN, NFD, Wi-Fi Direct, Ad-hoc networking,
wpa_supplicant

1. INTRODUCTION
1.1 Motivation
The following protocol design is intended for use
in ad-hoc environments wherein there are no

available Wi-Fi or cellular networks. This
protocol provides a means to which two Wi-Fi
Direct compatible Linux devices can connect to
one another to exchange and maintain
information about available NDN Data prefixes.
The following specification does not touch upon
multi-hop communication, but its design is such
that it should easily accommodate it if
implemented.

1.2 Scope
Even though the connection part of this project is
limited to handling Linux to Linux connectivity
right now, the NDN over Wi-Fi Direct protocol
part works for all the devices that support NDN
and NDN-CXX [5]. These devices need to be
connected at link layer before they can simply
run this protocol daemon and start
communicating the prefix information to their
peers using the same protocol.
 Also, because there is already an
implementation of a similar protocol in the NDN
project for Android to Android communication, a
few pending changes to this project will ensure
connection and communication between Android
and Linux machines as well. The prerequisite for
all these scenarios is obviously that these devices
are Wi-Fi Direct compatible and have suitable
APIs that allow us to manage the connections.
We shall talk in detail about all these topics in
sections to follow.

1.3 Interfaces
The protocol assumes the existence of an
underlying NDN forwarding layer (NFD), by
which Interest and corresponding Data packets
can be sent and received, among other common
use cases. The following design also utilizes
WPA Supplicant for Linux device connectivity

and NDN-CXX library for implementation and
execution of the protocol.

2. RELATED WORK

2.1 “NDN Over Wi-Fi Direct for Android”
This project defines its own protocol design for
running ad-hoc communication over Wi-Fi
interface using Wi-Fi Direct standard for Android
devices. The devices can exchange and maintain
information about available NDN Data prefixes
once the peer-to-peer communication is set up.
 The protocol defined in this project is very
similar to the one defined in our project. A few
basic changes have been carefully made in our
project to reduce the complexity of initial prefix
exchange and registration, which will be
explained in detail in the paper later. The design
of NDN Over Wi-Fi Direct for Android utilizes
the Android Wi-Fi Direct API as implemented by
December 2016 and this project has been
embedded inside the NFD application for
Android smartphones available on Google Play
Store [6].

2.2 wpa_supplicant
wpa_supplicant [7] is a WPA Supplicant for
Linux with support for WPA and WPA2 (IEEE
802.11i / RSN). It is suitable for both
desktop/laptop computers and embedded
systems. Supplicant is the IEEE 802.1X/WPA
component that is used in the client stations. It
implements key negotiation with a WPA
Authenticator and it controls the roaming and
IEEE 802.11 authentication/association of the
wlan driver.
 wpa_supplicant is designed to be a "daemon"
program that runs in the background and acts as
the backend component controlling the wireless
connection. wpa_supplicant supports a text-based
frontend (wpa_cli) and a GUI (wpa_gui) and
these are included with the wpa_supplicant
software. It is freely available. The use of
wpa_supplicant for this project has been
discussed in the working of the protocol in the
upcoming sections.

3. LINK-LAYER CONNECTIVITY
3.1 Wi-Fi Direct
Wi-Fi Direct is a certification mark certified by
Wi-Fi Alliance for devices supporting a
technology that enables Wi-Fi devices to connect
Directly, making it simple and convenient to do
things like print, share, sync and display.
Products bearing the Wi-Fi Direct certification
mark can connect to one another without joining
a traditional home, office or hotspot network.
 Although not all the Wi-Fi devices
necessarily support transmission and reception of
Wi-Fi Direct frames, most of the recent devices
do. Wi-Fi Direct standard came into the market
around the year 2008 for the first time. Devices
supporting Wi-Fi Direct were rolled out by the
leading manufacturers by 2010. Android devices
supported Wi-Fi Direct starting from the year
2012 and Android also provided an API for
developers in the same period. This led to a wide
use of Wi-Fi Direct for fast and reliable P2P
(point to point) communication, becoming an
increasingly preferred choice over Bluetooth [8]
that served a similar purpose.
 Linux devices are understandably the primary
interest for this project. These devices are capable
of supporting Wi-Fi Direct connectivity but do
not have an in-built manager software to establish
and manage P2P connections. We searched for
manager tools and found that wpa_supplicant is a
software that can be used to suffice the primary
needs of the project.

3.2 Using wpa_supplicant
wpa_supplicant is an open-source project that
implements key negotiation and other
authentication/association related steps for WPA
and WPA2 protocols. Additionally, this
supplicant can be configured to support P2P
connections if a flag CONFIG_P2P is set in the
defconfig file before building the code. Once it is
configured to support P2P i.e. Peer-to-Peer
connections, there are simple commands that can
be used to turn P2P on, search nearby peers and
connect to them at link layer.

Commands used in this project are:
A. p2p_find: scan for nearby peers who are
finding other peers too.
B. p2p_peers: show discovered peers in
vicinity.
C. p2p_connect <device addr> PBC go_intent =
<0-15> auth: attempt to connect to the device
whose device address (MAC) is provided as an
argument. PBC is the Push Back Control mode,
go_intent is the intent of the device to become a
group owner. 1 is the lowest and 15 is the
highest intent to become group owner.

 A group owner works as a softAP or like a
router who helps other client nodes in the group
to communicate with each other by forwarding
the messages. In this project, it is not important to
have a specific node to be a group owner. So, all
the nodes using this protocol can be configured to
fire the p2p_connect command with a go_intent
equal to 7, which means that the group owner
will be decided based on the random group owner
negotiation. If required, the choice to be a group
owner or client can be easily given as an option
to the user, which is done in the current
implementation for ease of testing and focusing
on the protocol.
 Another thing that is important here is that the
p2p_peers step fetches the p2p_name configured
by the other device and its MAC address as well.
Therefore, each device already has the
knowledge of the MAC addresses of its peers.
This MAC address knowledge is important for
the protocol in a way that will be explained in the
upcoming section. Connectivity is thus
established at link layer after all these steps are
executed.

4. PROTOCOL TO SYNC PREFIXES
4.1 Purpose of the protocol
It is important to understand the need of this
protocol in our case of ad-hoc communication. In
normal scenarios where devices are connected to
the internet and are using NDN, they need to
know where they can find the data their
applications are looking for. Also, these nodes
need to inform all the other nodes on the internet

that they are serving some particular prefixes that
their native NDN applications have announced.
NDN Forwarding Daemon (NFD) has the task to
do all this and it exchanges and updates all the
prefix information by multicasting interest and
data packets to all the neighboring nodes on the
internet.
 In case of an ad-hoc connection where all the
clients are Directly connected only to the group
owner, it is necessary to have a set of rules that
makes the NFDs of these nodes aware of these
connections and makes them exchange prefix
information in a specific way. This is exactly
why we need this protocol which is the prime
part of this project.

4.2 Purpose of using IPv6 link-local addresses
After the link layer connection stage, the only
addressing information known about peers is the
Wi-Fi Direct interface MAC address of both the
devices to each other. This information is
sufficient to communicate using NDN for Linux
devices, as NFD can simply use the ethernet face
created towards the local Wi-Fi Direct network
interface being used for this connection.
However, we want to use the same protocol to
make the communication of Linux devices with
even Android devices possible, and Android
devices cannot handle ethernet frames Directly
without using the IP protocol (IPv4 or IPv6).
Only if the Android smartphone is a rooted
device can it be configured to handle ethernet
frames Directly. Rooting is not a viable option to
the common user, thus leaving this option
infeasible. Thus, if we limit to using Direct
ethernet faces for NDN communication, we lose
out on extending the same protocol for Android
communication.
 To avoid this Android-Linux communication
incompatibility problem, we make use of the
IPv6 link-local address [9][10]. In IPv6 protocol,
link-local addresses are a special scope of address
which can be used only within the context of a
single layer-two domain, that is for a one hop
local communication. These addresses are useful
for establishing communication across a link in
the absence of a globally routable prefix or for

intentionally limiting the scope of traffic which
should not be routed (for example, routing
protocol advertisements). These IPv6 link-local
addresses are auto-configured as a part of IPv6
protocol for each of the network interfaces. What
is most important is the fact that these addresses
can be calculated by transforming MAC address
in a rule-based method. Thus, it obviates the need
of something like DHCP server because both
client and group owner have their own addresses
already. Also, as MAC address is already known
to the peers, nothing related to the IP address
needs to be sent over to start the conversation and
the link-local IPv6 address is calculated at both
ends as soon as the connection is established.

4.3 Model of operation
The protocol needs to take care of two major
things - to notify all connected peers about the
prefixes being served locally, and to request other
connected nodes to send the prefix information
they have. In Wi-Fi Direct groups, the group
owner is connected to all other nodes, whereas
the client nodes are only connected to the group
owner. These clients can talk to each other if the
group owner relays their prefix requests and
replies to the rest of the network by acting as a
router.
 However, there is still no need to make any
distinction in the protocol for group owner and
clients, because irrespective of the role, each
node should share only the information it has
learnt from all other nodes except the one it is
talking to. This is identical to a well-known
method called Split Horizon Route
Advertisement [11]. Thus, in the case of non-
group owner (client) nodes, they will only send
the prefixes announced at their NFD by their
local NDN applications. Group owners, similarly,
will only share the prefix information received
from either other connected nodes or announced
by local NDN applications. Sharing information
back onto the same interface from which it was
learnt will lead to well-known issues like routing-
loops [12] or poison reverse [13].
 Assuming that the reader has basic
knowledge like faces, routes, prefixes and their

role in NDN communication [3], we move ahead
to look at an example that explains the model of
operation in a way that is easy to understand. In
this example, a probe is an interest packet sent
after a constant interval to ask for prefix
information present at the receiver node. More
about probing is explained later.
EXAMPLE SCENARIO: Let’s say that there are
two appropriate Linux devices, A and B, that
wish to connect and communicate using this
protocol. They will first have to connect to each
other at link layer as discussed in Section 3.2.
Following are the steps that are the part of the
protocol to sync prefix information or in NDN
terms, to sync the Forwarding Information Base
(FIB):

1) After successful group formation, both devices
will register their local-hop probe routes to their
own NFDs, by which they will satisfy incoming
probe interests meant for them. As an example,
let us consider that node A has an IPv6 address
<GO-IP>, then A registers /localhop/wifidirect/
<GO-IP> expecting other nodes to use this prefix
to probe it.
2) Now add a udp6 route towards each other to
let applications send out information to the
correct peer using the correct face in the NFD.
Route will be added using a command like

nfdc route add /localhop/wifidirect/other-IP
udp6://[other-IP]:6363 by both nodes.

3) Both devices then begin the Probe Procedure,
where an interest packet is sent out after a fixed
interval of time. Details of probe procedure are
mentioned in section 4.4.
4) On receiving probe interest, prepare a reply
data packet containing all prefix entries from the
FIB entry except the ones that have next hop face
equal to the face-ID from where the probe was
received (to avoid poison reverse as discussed
before). Send this data packet back through the
same face as probe was received.
5) Repeat all the steps for each of the newly
added peers.

4.4 Probe Procedure
4.4.1 Sending probe interests:

a. On connecting with a peer, start the probe
procedure and repeat it after every 15
seconds.

b. Construct a probe interest with prefix
/localhop/wifidirect/other-
IP/probeSeqNo?MustBeFresh=True

c. Send this probe as an interest packet to
the peer and wait for the corresponding
data packet.

d. Reset the timer for next probe
immediately.

The probe basically says to the peer:
“Hey, please tell me all the prefixes that you can
serve, so that NDN applications running at my
end can look for the data with those prefixes from
you if needed.”

 Note that here we have set the time interval
between 2 probes to be 15 seconds, which is
same as in the Android protocol as well. This
interval can be further reduced to something
between 5 to 10 seconds as Linux laptops do not
have as much of a power consumption issue as
Android smartphone devices do. However, it
would be worthy to understand if there is any
problem caused by two different time intervals in
Android and Linux when they interoperate. Time
interval can be easily reconfigured to choose by
simply changing a variable in the code.

4.4.2 Receiving probe interests and replying with
data packet:

a. On receiving an interest, the peer finds
out all the prefixes that it has learnt (own
or other) and adds them to a data packet
and sends this data packet back through
the same face. These prefixes exclude the
ones starting with /localhop/wifidirect and
/localhost as these prefixes are not useful
and not meant for the peer.

b. As discussed earlier, all the prefixes that
have been learnt from the peer who
probes, are to be excluded from the data
packet. This is to avoid Poison Reverse
problem.

So, the data packet replies saying:
“These are all the prefixes that I can help you
with. Send me interest packets if they begin with
one of these prefixes.”

4.4.3 Receiving data packet as a reply to probe:

a. Parse all the prefixes sent by the peer in
the data packet.

b. Update all the records in the local RIB
based on the data prefixes parsed - add a
new entry if there is no existing entry for
a prefix or update the entry if it already
exists.

c. The next hop i.e. the face ID of these
prefixes is the face from which this packet
was received (face towards the peer
itself), as interests for these prefixes need
to be sent to this very peer.

d. All the added or updated entries have an
expiration period of 100 seconds. This
ensures that if this NFD does not hear
back from the peer for more than 100
seconds, it should mark all the entries
towards it as unreachable.

e. Expect a fresh view of the prefix
availability in next 15 seconds.

4.5 Packet formats
4.5.1 Probe Interest:

Probe Interests should always have the form:
/localhop/wifidirect/<OtherIP>/probe?MustB
eFresh=True
 Recall all IP addresses here are IPv6 link-
local addresses (format is fe80::/10). The
MustBeFresh flag is set to True so that nodes will
always return their most up to date Data prefixes.

4.5.2 Probe Data:
Probe Data packets should be of the form:

Prefix1\n
Prefix2\n
.
.
PrefixN\n

 If we wanted to add new sections to the
response, we would need to start the packet with
the number of prefix entries N, so that we
immediately know where the beginning and
ending of the Data prefixes were. There is no N
in the current format because adding a new
section does not seem necessary.

5. CHALLENGES/FUTURE WORK
There are two major challenges that we faced
during this project. First is the smooth merging of
connectivity and protocol parts of the code such
that they run as an easy to use utility for the end
user. Second is facilitating Linux to Android
intercommunication. The latter challenge falls out
of the original scope of the project, which is to
make Linux to Linux communication possible,
but is still an important issue as resolving it will
make Wi-Fi Direct communication more flexible
and useful for common users and will open doors
for a variety of NDN apps. Both the challenges
are a part of the future work of this project.

5.1 Merging connectivity with protocol for
ease of access
The final and ideal aim of the project is to make
it as simple as possible for the user to use Wi-Fi
Direct and communicate with peers using NDN.
However, no Linux distribution has a facility to
connect to Wi-Fi Direct peers using the
NetworkManager GUI like it is possible to
connect to Wi-Fi networks or even pair Bluetooth
devices. Also, adding the Wi-Fi Direct
connection facility to the NetworkManager GUI
is a non-trivial task to achieve on Linux distros.
 Another way to achieve the goal of simplistic
connection is to add this protocol bundled with
the connectivity part to NDN Control Center.
Currently, the project has as a command line
interface that lets the user select the network
interface to use for the Wi-Fi Direct connection,
then choose the peer to connect to and finally
choose between being a group owner or a client.
We look forward to tackling this challenge after
solving the next challenge as the latter one would
result in more overall impact.

5.2 Linux to Android interoperability
As discussed in Section 4.2, the purpose of using
IPv6 link local addresses in this protocol was that
Linux to Android communication will be possible
using this protocol. However, each node needs to
create a udp6 face (as seen in Section 4.3)
towards the other inside NFD, which is not
possible right now due to an NFD bug.
 The NFD FaceUri parser should recognize
link-local IPv6 addresses in the form of
udp6://[fe80::d6ae:52ff:fecd:260c%25wlan0]:636
3. Here, %wlan0 part is required to specify the
NIC being used and it is written as %25 to escape
the percentage sign, according to the rules in the
RFC3986 [14]. TCP and UDP factories should
allow creating faces using link-local IPv6 address
with explicitly specified NIC name as user might
have more than one NIC that he wishes to
choose, and not specifying the NIC leaves NFD
clueless as to which interface to use for face
creation. Currently, the parser in NFD does not
parse this format correctly and results in an error.
A bug [15] has been reported for this issue to the
NDN Redmine project issue tracking system. We
plan to submit code for this issue very soon, to
get this interoperability working. Currently, we
are simply using Ethernet faces created by default
in the NFD for each of the interfaces, and this
works perfectly well for Linux to Linux scenario.

6. IMPLEMENTATION
The complete protocol is implemented as a C++
program that requires NFD and NDN-CXX
libraries installed on the system to run. The
connectivity part needs wpa_supplicant to be
installed and running in the background and our
code contains tweaked parts of the wpa_cli
program that talks to the wpa_supplicant daemon
and fires the necessary p2p commands. No other
special installations is necessary. One might need
to configure the built-in NetworkManager to stop
managing the Wi-Fi Direct interface we plan to
use as internally even NetworkManager software
commonly used by many Linux distros uses
wpa_supplicant and two instances cannot manage
the interface together. This automation is a part

of the challenges we discussed in Section 5.1 but
is not a crucial roadblock.
 The current implementation is much simpler
and efficient than the pre-existing Android
protocol implementation, mainly because of the
use of IPv6 addressing that obviates the need to
have a DHCP server and waiting/exchanging
initial packets to get knowledge of peer’s IP
address and introduces interoperability between
Linux and Android.

7. CONCLUSION
The paper has presented the work done in this
project that aims to make Linux laptops using
NDN applications capable of communicating
with each other over Wi-Fi Direct. This
implementation is the first C++ implementation
of the protocol and has a design that will make it
easy to extend the same protocol over different
platforms without the need of making any major
changes. However, the protocol still has plenty of
room to be improved and extended, especially on
the Linux distribution integration side of it. We
hope that this project will be greatly useful to
promote the use of NDN over the edge and attract
more developers to build apps that can take
advantage of this infrastructure-less mode for
flexible connectivity and peculiar use-cases.

8. ACKNOWLEDGEMENTS
Many thanks to Alex Afanasyev for discussing,
guiding and providing valuable feedback at every
step of this project. Thank you to Lixia Zhang for
advising and motivating me whenever I needed
help for this project. Special thanks to Wesley
Minner, Rachel Chu and Da Teng for giving me
their valuable time and suggestions during the
project.

9. REFERENCES
[1] http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,

K. Claffy, P. Crowley, C. Papadopoulos, L.
Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication
Review, July 2014.

[3] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moi-
seenko, Y. Yu, W. Shang, Y. Huang, J. P.
Abraham, S. DiBenedetto, C. Fan, C.
Papadopoulos, D. Pesavento, G. Grassi, G. Pau,
H. Zhang, T. Song, H. Yuan, H. B. Abraham, P.
Crowley, S. O. Amin, V. Lehman, , and L. Wang,
“NFD Developers Guide,” NDN Project, Tech.
Rep. NDN- 0021, Revision 5, oct 2015.

[4] https://redmine.named-data.net/projects/nfd-
android/wiki/NDN_Over_WiFi_Direct_Protocol_
Specification

[5] NDN Project Team, “NDN Client Library for
C++ and C,” Available at
https://github.com/named-data/ndn-cpp.

[6] https://play.google.com/store/apps/details?id=net.
named_data.nfd&hl=en

[7] https://w1.fi/wpa_supplicant/
[8] https://www.bluetooth.com/specifications/bluetoo

th-core-specification
[9] Hinden, R. and S. Deering, "IP Version 6

Addressing Architecture", RFC 4291, DOI
10.17487/RFC4291, February 2006, <http://
www.rfc-editor.org/info/rfc4291>

[10] Behringer, M. and E. Vyncke, "Using Only Link-
Local Addressing inside an IPv6 Network", RFC
7404, DOI 10.17487/RFC7404, November 2014,
<http://www.rfc-editor.org/info/rfc7404>

[11] https://technet.microsoft.com/library/Cc940478
[12] https://en.wikipedia.org/wiki/Routing_loop_probl

em
[13] Hedrick, C., "Routing Information Protocol",

RFC 1058,DOI 10.17487/RFC1058, June 1988,
<http://www.rfc-editor.org/info/rfc1058>

[14] Berners-Lee, T., Fielding, R., and L. Masinter,
"Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, DOI
10.17487/RFC3986, January 2005,
<http://www.rfc-editor.org/info/rfc3986>

[15] https://www.google.com/url?q=https%3A%2F%2
Fredmine.named-
data.net%2Fissues%2F1428&sa=D&sntz=1&usg
=AFQjCNF5Fus0YCee1e0Utm25GO_l1aTSiw

