Performance Evaluation of Named Data Networking Forwarding Daemon (NFD)

Susmit Shannigrahi, Chengyu Fan, Christos Papadopoulos

Goal

- Evaluate NFD performance an application's perspective
 - Establish expectations for applications
 - Find the limitations and bottlenecks of the current NDN codebase
- Non-goals
 - Per-module performance profiling

Evaluation Topology

Baseline Network Performance

NFD Performance

- Single NFD
- ndncatchunks/putchunks
- Congestion control = off

Better With Congestion Control

- Very few congestion markings, large improvements
- No packet loss

Caching slows down NFD significantly

• Candidate for a separate thread?

The results above are performance upper limits

- No network delay
- No caching

Performance in WAN

Performance over TCP tunnels

- Maxes out around 3Gbps
- Note that performance flattens for higher chunk sizes

Performance over UDP tunnel

- Much lower than TCP
- Max segment size = 64K
- Chunk a Data Packet over multiple UDP packets?
 - Currently not possible

Performance over Ethernet Tunnel

- Possible to communicate without IP, but much slower than TCP/UDP
- ~150Mbps with 32K segments
- Possible bug: https://redmine.named-data.net/issues/4479

Throughput vs Number of Hops

- One, two, and three NFDs
- Decreases significantly with additional hops
- TCP tunnels can also attributes to performance

Receiver Side Processing Delay

- Higher with smaller chunk sizes
- Almost constant for higher chunk sizes
 - Queuing delay?

R COR

Server Side Processing Delay