

UCLA

KITE: Producer Mobility Support in Named Data Networking

Yu Zhang¹, **Zhongda Xia**¹, Spyridon Mastorakis², Lixia Zhang²

Harbin Institute of Technology ² UCLA

NDN Mobility Support

- Consumer mobility is natively supported √
 - pull-based communication model + stateful forwarding plane
- Producer mobility is still an open issue X
 - existing solutions are not "simple" enough
- Motivation: can we further exploit native NDN features to support producer mobility in a relatively simple way?

NDN Stateful Forwarding Plane

NDN Stateful Forwarding Plane

- Data is forwarded back along a hop-by-hop "breadcrumb trail"
 - KITE saves the "breadcrumb trail" for Interest forwarding

Overview

As simple as kite flying

Namespace Design

Namespace Design: Explained

```
tracing prefix = routing prefix + tracing segment

TI/TD prefix = routing prefix + tag ("trace") + tracing segment
```

- Tracing prefix is longer than routing prefix, so trace setup is separated from the routing plane
- Tracing prefix and TI/TD prefix share a common prefix: routing prefix, so consumer Interest and trace can meet at the RV
- Tracing prefix can be derived from TI/TD prefix by removing tag
- Tag is a reserved keyword ("trace") that separates trace setup from data retrieval

Consumer Interest Forwarding

Trace Setup

Trace Setup: Prevent Prefix Hijacking

- We make the following assumptions:
 - (I) signature cannot be spoofed
 - (2) RV is not compromised
 - (3) the infrastructure is trusted
- Prefix hijacking is prevented under the assumptions above
 - attacker cannot push TD out: not possible with NDN
 - attacker cannot generate valid TI: (1)
 - attacker cannot pull TD back by sending fake TI: (2)
 - attacker cannot receive TI and collude with a partner: (3)

Trace Setup: Summary

- Forwarder forwards TI and TD as regular packets
- Forwarder searches for the "trace" tag to identify a TD
- Prefix hijacking is prevented by doing verification at the RV
- The trace setup process forms a closed feedback loop
 - receipt of TD implies two-way connectivity
 - MP can recover from packet loss during trace setup by retransmitting TI

Trace Maintenance

- Why soft-state?
 - Simple, no inter-forwarder protocol
- How?
 - MP decides the lifetime, and put in TI as "Parameter"
 - Forwarder obeys MP's instruction and manages the lifecycle of trace accordingly

Soft-state Trace and Relocation

Issues with Soft-state: Signaling Overhead

- Extra signaling overhead is incurred if trace expires before relocation
 - more than one TI needs to be sent per relocation
 - MP may adjust lifetime setting according to estimated time of stay
 - lifetime should be set short enough to recover from failures promptly

Issues with Soft-state: Stale Trace

- Stale trace emerges if previous trace is still alive after relocation
 - leads consumer Interests into a dead-end
- In certain cases, consumer can't reach the MP until stale trace expires
 - path shortcut + stale trace + no fresh trace on the forwarding path

Mitigate the Impact of Stale Trace with Forwarding Strategy

Proof of Reachability

- Upon receipt of TD, forwarding paths to the MP exists for any consumer
 - as long as the routing prefix is globally reachable
- Consumer Interests can always reach the MP as long as valid forwarding paths exist
 - assume that last-hop forwarder will send NACK back for failed recovery
 - the introduced forwarding strategy does a depth-first search on the forwarding tree consisting all alive traces (fresh and stale)

In-network Interest Retransmission

Summary

KITE and Applications

Pull

Upload

Share

Push

KITE vs. Other Solutions

MP-Chasing: locate the MP

- Mapping-based: data prefix is mapped to a topology-dependent locator
- Routing-based: updates the forwarding tree built with routing
 - scalability concerns
- Tracing-based: trace the MP with the stateful forwarding plane
 - ensure reachability with a routable prefix
- KITE: a tracing-based approach
 - locator-free
 - transparent to routing and data retreival
 - abuse-proof

Implementation and Evaluation

Implementation

- Proof-of-concept prototype
 - open source: https://github.com/KITE-2018
 - based on "real" NDN code (NDN Forwarding Daemon, NFD)
 - two application scenarios
 - directly usable for simulations with ndnSIM 2.x

Evaluation

- KITE vs mapping-based solutions
 - simulations on a toy topology
 - Pull and Upload scenario
 - different mobility patterns
- Preliminary results, not for showcasing performance

Simulation Results

KITE is insensitive to mobility pattern

Signaling overhead - Pull

Packet loss - Pull

Simulation Results

• KITE only slightly suffers from triangle routing

Hop count - Pull

Hop count - Pull - distributed RV 31

Conclusion

Conclusion

- Transparency
 - to data retrieval process: no locator, no change to names
 - to routing: operates on non-routable prefixes
- Security
 - provides usable security with RV doing the verification
- Scalability
 - orthogonal to routing scalability
 - the RV functionality can be distributed across cooperative RV instances to scale with increasing number of mobile devices/prefixes/events
- Architectural impact
 - only extends the stateful forwarding plane
 - no change to packet format

Future Work

Future Work

- Efficient soft-state management
- Extensive evaluation to quantify performance in more, finer tuned simulation setups
- Integrate KITE into NDN code release
 - NFD release
 - API library release (ndn-cxx)
- Conduct experiments on NDN testbed
- KITE with distributed RV for better scalability and robustness

Thank you!

Q&A

xiazhongda@hit.edu.cn