
1/18

Async-strategy Implementation Introduction
NFD Development

Ju Pan

University of Arizona

July 9, 2019



2/18

Contents

Definition

Behaviour

Implementation Details

Concerns and Solutions



3/18

Definition



4/18

Definition

What is async-strategy?

1. It’s an optional forwarding behaviour that the existing
forwarding strategies can take advantage of. It’s neither a
standalone strategy nor a building block. (Reasons are in the
next slide)

2. Async strategy is responsible for transmitting pending
Interests upon FIB nexthop creation.



5/18

Definition / Why not a strategy or a building block?

1. There is no logic other than ”retain PIT entry”, making a
”building block” in a separate class doesn’t make sense.

2. Creating a separate strategy doesn’t make sense either.
Because after FIB nexthop is in place, the required forwarding
logic for async-strategy is almost the same as forwarding a
new Interest and that differs per strategy. Duplicating an
existing strategy increases the code complexity and harms the
maintainability.



6/18

Behaviour



7/18

Behaviour

1. When an Interest arrives but there’s no matching FIB
nexthop, the PIT entry is still retained.

2. When a new FIB nexthop is inserted, forwarding plane
enumerates a portion of the PIT covered by the FIB entry and
triggers the strategy. This requires forwarding plane changes.

3. The strategy may forward the Interest to the new FIB
nexthop.



8/18

Implementation Details



9/18

Step 1

Step 1: When an Interest arrives but theres no matching FIB
nexthop, the PIT entry is still retained.

1. In Fib class, we add an afterNewNextHop signal.

2. Create new triggers in Strategy base class:
supportNextHop() and afterNewNextHop()

3. Enable user to decide whether to activate ”retaining PIT
entry” feature by using strategy parameter. (#3868).

4. Add new block in
BestRouteStrategy2::afterReceiveInterest to
check if support ”retaining PIT”, if so, set the PIT entry
expiry timer to the Interest lifetime.

https://redmine.named-data.net/issues/3868


10/18

Step 2

Step 2: When a new FIB nexthop is inserted, forwarding
planeenumerates a portion of the PIT covered by the FIB
entry andtriggers the strategy. This requires forwarding plane
changes.

1. In forwarder class, we add a
triggerStrategyAfterNewNextHop() function. It
handles the partial enumeration of the affected NameTree
entries. triggerStrategyAfterNewNextHop() is
connected to afterNewNextHop signal.

2. For each affected NameTree entry, we lookup strategy choice
table to determine the effective strategy for
nte.getName(), then trigger strategy on PIT entry.



11/18

Step 3

Step 3: The strategy may forward the Interest to the new
FIB nexthop.

1. In afterNewNextHop() trigger, we forward the Interest to
nexthops.



12/18

Concerns and Solutions



13/18

Overhead in Partial Enumeration (1/4)

1. The NameTree::partialEnumerate funciton takes
EntrySubTreeSelector as one of two parameters.
EntrySubTreeSelector is a function which returns a
<bool, bool> pair.

I The first bool indicates whether entry should be accepted;
I The second bool indicates whether entry’s children should be

visited.

2. If the current entry’s subtree doesn’t have any entry support
async-strategy behaviour, we can simply set the second bool
value to false so that the partial enumeration won’t visit
the subtree at all. (Proposed data structure change is in the
next slide).



14/18

Overhead in Partial Enumeration (2/4)

Proposing a NameTreeEntry modification to solve the
overhead:
Adding an integer field numOfSubtreeSupportAsync for
NameTreeEntry class to indicate how many subtrees (root from
current node’s children) support async-strategy behaviour.

Init: the numOfSubtreeSupportAsync is set to 0 by default.

numOfSubtreeSupportAsync is greater than 0 means there
are nodes in the subtrees that support async-strategy. So in partial
enumeration, we should visit the subtree.



15/18

Overhead in Partial Enumeration (3/4)

Case 1: when a new entry is inserted into the NameTree

I If the strategy choice supports async-strategy:

1. Increase its parent’s numOfSubtreeSupportAsync by 1.
2. If the parent numOfSubtreeSupportAsync is set from 0

to 1 (meaning this subtree starts to support async-strategy),
we go to parent’s parent and repeat the algorithm all the way
to the root entry if necessary. Otherwise, stop here.

I If the strategy choice doesn’t support async-strategy, we do
nothing.



16/18

Overhead in Partial Enumeration (4/4)

Case2: when an existing entry’s strategy choice is changed.

I SC is changed from supporting async-strategy to not
supporting async-strategy:

1. If numOfSubtreeSupportAsync is 0, then go to its parent
and decrease numOfSubtreeSupportAsync by 1

2. If parent’s numOfSubtreeSupportAsync becomes 0 and it
doesn’t support async-strategy, go to parent’s parent and
repeat the algorithm.

I SC is changed from not supporting async-strategy to
supporting async-strategy:

1. If its numOfSubtreeSupportAsync is 0, repeat the first
bullet point in case 1;

2. Otherwise, do nothing.



17/18

Asynchronous Enumeration or Bounded Enumeration

TBD



18/18

Paced/Bounded Outgoing Interests to Prevent Congestion

TBD


	Definition
	Behaviour
	Implementation Details
	Concerns and Solutions

