NDNLP-BFD Project Summary Report

Sheng Hu, Bochun Zhang, Fei Peng
{shenghu, bochunzhang, pengfeifc}@cs.ucla.edu

1. Introduction

NDN Link Protocol (NDNLP) [1] is a layer 2.5 protocol (i.e. between link layer and
network layer) running between two nodes currently, which allows the NDN applications
run directly on Ethernet. Our project NDNLP-Bidirectional Forwarding Detection is a
component of NDNLP.

Current NDNLP don’t have a mechanism to detect failures quickly. NDNLP-BFD
achieves effective failure detection for NDNLP by observing the transmission in data
plane and sending extra small packets when link is idle.

2. Problem

Current NDN forwarding engine has no fault detection component in link layer. Link
failures between adjacent forwarding engines could exist in Ethernet, Broadcast and
multicast network, and TCP/UDP/IP tunnels. In order to detect NDN forwarding failures
in link layer, a link layer failure detection protocol is needed.

3. Design

3.1 Overview

NDNLP-BFD works on point to point unicast links including physical links and virtual
tunnels. NDNLP-BFD is a part of the NDN forwarding engine that serves the single
purpose of failure detection. NDNLP-BFD enabled NDN forwarding engines can only
communicate with engines with NDNLP-BFD enabled as well, otherwise the opposite
engine that doesn’t reply to keep-alive packets are considered down. Figure 3-1 shows
the high level work around of the design.

3.2 Packets and Timers

There are two kinds of packets used in NDNLP-BFD, Keep-alive and Ack. Keep-alive
packet is sent when one interface want to make sure the other interface is alive. The
Ack packet is used to acknowledge Keep-live.

There are two timers used: Idle Timer and Failure Timer. The Idle Timer is used for one
interface to send Keep-alive to the other side when it times out. The Failure Timer is
used for failure detection. When it times out, the other interface is considered dead.

3.3 Modes

Each interface of the forwarding engines is responsible for making sure the other
interface is alive if it is required to know the link failure status. Whenever there are
packets received from the other side, the link is considered alive. These packets
includes Keep-alive packet, Ack packet, and NDN interest/data packet.

There are two modes in NDNLP-BFD: full mode and passive mode. Two interfaces in
the NDNLP-BFD session need not necessarily be in the same mode, however, at least
one of the two interfaces shall be in full mode.

No matter which mode an interface is in, it considers the other side dead when there is
no packet received for a failure period. An interface keeps a Failure Timer for failure
detection. Each kind of incoming packet including Keep-alive, Ack, and NDN
interest/data will refresh the Failure Timer.

3.3.1 Full Mode

Full mode is used when the interface want to make sure the other interface is alive.
When an interface is in full mode, it will actively send Keep-alive packet to the other
interface if there is no packet received for an idle period.

An interface in Full Mode will keep an Idle Timer for idle detection. When the Idle Timer
times out, the interface sends Keep-alive to the other interface. Each kind of incoming
packet including Keep-alive, Ack, and NDN interest/data will refresh the Idle Timer. A
Full Mode interface keeps both Idle Timer and Failure Timer.

3.3.2 Passive Mode

When an interface is in passive mode, it does not have idle timer and would not send
Keep-alive packets to the other interface. A Passive Mode interface keeps only Failure
Timer.

3.3.3 Use cases

A typical Full Mode to Full Mode link would be between two NDN routers. In this case,
each side would like to make sure the other side is alive. If there is no NDN packet in

transit on the link, both interface would actively send Keep-alive to the other side and

the other side would will reply Ack. This symantec will not double the number of packets
transmitted since a Keep-alive packet will also refresh the Idle Timer on the other side.

A typical Full Mode to Passive link would be between a router and a subscriber where
the subscriber wants to make sure the router is alive but the router does not care if the
subscriber (such as a cell phone or laptop) is still online. In this case, the subscriber will
actively send Keep-alive packets to the router. The router will automatically consider the
subscriber dead after Failure Timer times out.

Session Start ————p

Idle Interval

Idle Timer -
: —p>
Expire -___""""“-—-Keep A

Fail Timer Idle Ti | Ak
all rimer e limer

Reset Reset

Fail Timer Idle Timer | ___—Inte
Reset Reset

W m

Idle Timer

Expire Tl

Idle Interval

Idle Timer I

Expire H‘"‘""“-——-Keep Alive—____

Fail Interval

Fail Timer

h A
Expire is

Face dead

Figure 3-1 NDNLP-BFD work around

3.4 Face API
The basic idea is to extend the nfd::Face API to receive link-layer packet by TLV-TYPE.
When NfdFailureDetector is attached onto a face, the detector adds three link-layer
receive handlers:

e witness: this is called every time a recognized link-layer packet is received,

including Interest, Data, NDNLP-BFD packets.
e processKeepAlive: this is called only when a keep-alive packet is received.
e processAck: this is called only when an ack packet for a keep-alive is received.

The detailed API design is as follows:

namespace nfd {

class Face // extends nfd::Face
{
public:
/** \brief sends a TLV block on link layer
*/
void
linkSend(const Blocké& block);

/** \brief represents a link layer packet handler
* \param block a link layer packet
* \return whether the packet has been processed
* and shouldn't be processed by another link receive handler
*/
typedef std::function<bool (const Blocké& block)> LinkReceiveHandler;

/** \brief adds a link layer packet handler for a specific TLV-TYPE
*
* Link layer packets of this TLV-TYPE are passed to handlers in ascending
priority,
* until a handler returns true to terminate the processing.
*/
void
addLinkReceiveHandler (uint32 t tlvType, int priority, LinkReceiveHandler
handler) ;
bi

protected:
virtual void
networkSend (Block block);

virtual void
linkSend (Block) = 0;

virtual void
networkReceive (Block block);

virtual void
linkReceive (Block block);

private:
std::unordered map<uint 32, std::multimap<int, LinkReceiveHandler>>
m_linkReceiveHandlers;

void
initializeDefaultLinkReceiveHandlers () ;
} // nfd namespace

3.5 BFD API
A face can operate in one of the two BFD modes:

e full mode: in this mode the face can both transmit keep-alive and ack packets

e passive mode: in this mode the face can respond keep-alive packet with an ack

packet, but does not transmit keep-alive packet actively

Typically a router’s face could operate in passive mode while leaving the job of keeping
communication alive to the potentially mobile host, e.g. a laptop, which should operates
in full mode.

The detailed API is as follows:

namespace nfd {

/** \brief indicates the mode in which BfdFailureDetector operates
*/
enum BfdMode {
/** \brief PASSIVE mode

*

* In this mode, BfdFailureDetector cannot transmit keep-alive packets.
*/

BFD PASSIVE,
/** \brief FULL mode

*

* In this mode, BfdFailureDetector can transmit keep-alive packets.
*/
BFD FULL

bi

/** \brief supplies options to BfdFailureDetector
*/
struct BfdOptions {

/‘k*
*/

\brief gives operation mode

BfdMode mode;

/**

*
*
*
*

*

*/

\brief gives idle period

In FULL mode, after receiving the last link layer packet or sending
the last keep-alive,

if no link layer packet of any kind has been received during this
period,

a keep-alive packet shall be sent.

time: :nanoseconds idlePeriod;

/** \brief gives fail period

*

*

*

*

*

*/

In FULL or PASSIVE mode, after receiving the last link layer packet
of any kind,

if no link layer packet of any kind has been received during this
period,

a face failure shall be declared.

time: :nanoseconds failPeriod;

}s

class BfdFailureDetector : noncopyable

{

public:

explicit

BfdFailureDetector (shared ptr<Face> face, BfdOptionsé& options);

EventEmitter<> onFail;

~BfdFailureDetector () ;

protected:
/** \brief process NDNLPv2 keep-alive packet

*

*

*

*

*

*

*

*/

This function is added as LinkReceiveHandler for NDNLP-CHUNK-TYPE.

This function:
1. If NdnlpChunk represents keep-alive, respond with acknowledgement

\return true if NdnlpChunk represents keep-alive

bool
processKeepAlive (const Blocké& block);

/** \brief process NDNLPv2 acknowledgement packet

*

*

*

*/

This function is added as LinkReceiveHandler for NDNLP-CHUNK-TYPE.

This function does nothing. It's just to drop the packet.

\return true if this packet acknowledges a previous keep-alive packet

bool
processAck (const Blocké& block);

/** \brief witness a non-NDNLPv2 packet
*

* This function is added as LinkReceiveHandler for all TLV-TYPEs
* with small priority number.

*

* This function:

* 1. reset idle timer and fail timer
*

* A\return false

*/

bool

witness (const Blocké& block) ;

private:

shared ptr<Face> face;
BfdOptions m bfdOptions;
ndn: :EventId failTimerId;
ndn: :EventId idleTimerId;

/** \brief send a keep-alive packet on link layer

*/

void

sendKeepAlive () ;

/** \brief report face failure to the upper hierarchy

*

*/

This function basically call Face::fail to trigger the failure

void

reportFailure () ;

}s

} // nfd namespace

4. Implementation
Since our code is implemented for experiment purpose, currently both Idle Period and
Fail Period are hard-coded in the implementation and use values of one second and
three seconds respectively. In addition to that, since the the changes in the Face API

event

affect most of the inherited different faces and we are limited in time, we only integrated
our implementation into DatagramFace and therefore carried out the test on UDP
channel.

We also hard-coded the BFD mode when testing, but we will look into the upper layer
codes in the future to make it automatically configured according to whether the face is
created on demand or not.

We have tested both full mode and passive mode on our computers. The basic
functions designed above are working correctly. Later we would get rid of the
hard-coded timers to make our implementation more flexible to use.

5. Environment Setup

Our project is developed based on ndn-cxx-0.2.0 and nfd-0.2.0, which are the stable
release versions. To set up the environment for experiment, one should first check out
these repositories and then add or replace the files under NFD/daemon/face with the
files provided in this link:
https://drive.google.com/folderview?id=0BwwZjGabHTWfTFdudnRKMGIDQUE&usp=sh

aring

Once the files are ready, compile the cxx library as usual and compile NFD with C++11.
To test if the BFD failure detector works, run the producer and consumer in the built
examples of cxx library and use nfdc register /example udp://<other host>
to register a face. A log file 1og. txt would be created under the home directory (~)
andone canuse tail -f ~/log.txt to monitor the real-time status of detector.

6. Issues

e The stable release of NFD[2] compiled with C++11 works well on 32-bit Linux but
crashes upon start on 64-bit machine. We are not sure if this is a bug of g++ or
nfd-0.2.0.

e Source codes of websocket-channel.cpp and websocket-face.cpp do
not compile with C++11. Since we are not using these part of face, we simply
comment out the lines that do not compile. This need further investigation during
the integration in the future.

e Due to time limitation, we haven’t unit-tested our implementation. This should be
done before merging our code into the major fork.

https://drive.google.com/folderview?id=0BwwZjGa6HTWfTFdudnRKMGlDQUE&usp=sharing
https://drive.google.com/folderview?id=0BwwZjGa6HTWfTFdudnRKMGlDQUE&usp=sharing

7. Acknowledgements

A debt of gratitude is owed to Junxiao Shi and Prof. Lixia Zhang, for their big
contributions to the design of this project, this project would not been possible without
their diligent efforts and expertise.

8. Reference

[1] Junxiao Shi, Beichuan Zhang, “NDNLP: A Link Protocol for NDN”,
http://nameddata.net/wpcontent/uploads/TRLinkProtocol.pdf

[2] Alexander Afanasyev et, al. “NDN Developer’'s Guide”,
http://nameddata.net/wpcontent/uploads/2014/07/NFDdeveloperguide.pdf

[3] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, June
2010, http://www.rfceditor.org/info/rfc5880.

http://www.google.com/url?q=http%3A%2F%2Fnamed%C2%ADdata.net%2Fwp%C2%ADcontent%2Fuploads%2FTRLinkProtocol.pdf&sa=D&sntz=1&usg=AFQjCNE_XiqtrRPWu0Tk6asg1wxi7WWSEQ
http://www.google.com/url?q=http%3A%2F%2Fnamed%C2%ADdata.net%2Fwp%C2%ADcontent%2Fuploads%2F2014%2F07%2FNFD%C2%ADdeveloper%C2%ADguide.pdf&sa=D&sntz=1&usg=AFQjCNF_KxpQqGbyMfWwdHimJG689q_aZQ
http://www.google.com/url?q=http%3A%2F%2Fwww.rfc%C2%ADeditor.org%2Finfo%2Frfc5880&sa=D&sntz=1&usg=AFQjCNFEjXBnx10Rwl28B-l-3mglEOEMPA

