Group-based Encryption
Protoco

Scenario

* One or more data producers
« produced contents are encrypted
« datais produced in a time sequence

« User group
« group members have the same read access to data
* a group member could be an individual user or another group
« each group has a manager who can decide the membership

 Read access to data is granted through groups
« data producer has a primary read access group
» multiple producers may share the same primary read access group

* manager of the primary read access group can

* grant the access to another user or a secondary group by adding the user or
group as a group member

« a secondary group consists of individual users

Group Keys

Each group (either primary or

secondary) has two pairs of Joms/read/boelter/4805 Joms/read/boelter

public/private keys LR i

* group authority key: (Kgy, Kgs) £ <ge(9°) @ 7 gt @
- only used for verification/signing £ Kga(90) / \ / !

« private key owner: group manager <« { manager \.\
. v(al,-ice) ® A ;
* group encrypt/decrypt key: (Kge Kgq) ‘ /ahce 8

» only used for encryption/decryption

- private key owner: every group <+ k v(bob) O
member /bob

Group decrypt key Kgyq ‘ /bms/group/audﬂ

ge(g1) e s
* Qgenerated by group manager e i
* encrypted with members’ public key .

» if member is a group, encrypted with "’

the member group’s kg
* (optionally) signed with kg

Each producer

* must have a primary read access
group

* may have one ore more secondary
groups

Secondary groups are managed
as members of the primary group
« the primary group’s decrypt key k gd
|s encrypted with secondary group S

ge

* members of a primary group also
have the access to the primary
group’s Kgq

Producer only needs to encrypt its
data enoryptron key kg with its
primary group’s Kge

/bms/data/boelter/4805/electrical/xfmr-6

Primary/Secondary Groups

/bms/read/boelter/4805 /bms/read/boelter
90 """

’l manager 8 8
primary /alrce 8 /
QTOUP .’ /

/bob y
secondary “Ssneeee

group .~
- /bms/group/audrt

? @ \\
4 - secondary
\ ~/.__ group

S \,

S -

Primary/Secondary Groups (cont’d)

Primary group’s privilege
« determined by the group name
« group name is related to producer name

« group name: /bms/read/boelter/4805
» producer name: /oms/data/boelter/4805/electrical/xfmr-6

Secondary group’s privilege:
« combination of primary groups of which the group holds a membership

e group name is irrelevant to producer name

« if a group /oms/group/audit is the member of both /bms/read/boelter and /oms/read/melnitz,
the member of group /oms/group/audit has the access to data under both /oms/data/boelter
and /bms/data/melnitz

|deally
» the membership of primary groups are defined by secondary groups and are
relatively stable
» audit group are always authorized to read data from each building
« the membership of secondary groups are defined by individual users and may
change from time to time
« aindividual user may be occasionally added into/removed from the audit group

(General Process

. Data publishing

generate content
encrypt content using a symmetric content encryption key kg
publish encrypted content
* signed with the producer’s private key
encrypt k, using the primary group encryption public key Kge
publish encrypted k,
signed with the producer’s private key

« Data consuming

fetch the encrypted content
fetch the encrypted content encrypt key k. (through EncryptKeylLocator)
determine the corresponding primary group’s encrypt key kgyq

if a consumer is authorized (member of the primary group or secondary group), the
consumer should have the primary group decrypt key Kgq

decrypt content encrypt key kg
decrypt content

« Centralized encryption key management is avoided

Private
Domain

Publicly
Domain

Private
Domain

(General

Process

Primary Group Manager

Group
decrypt
private key

Producer
Data encrypt
symmetric
key kg
Data
e
Data

g

Primary Group Member
(secondary group/
individual user)

Member
public key

ky/Kge

o
Group
encrypt
public key
k

Member
private key

ks kgd

@ Encryption @ Decryption

Group Key Rollover

Adding a new member does not require a new group encrypt/decrypt key

A new group encrypt/decrypt key must be generated when a member is removed from the
group

A group manager may also periodically generate a new group encrypt/decrypt key

Primary group key rollover

« each decrypt key has a timestamp and represents the access to data produced during a certain
period
* access to a particular decrypt key must be explicitly granted
* access to a decrypt key with a later timestamp does not imply the access to previous decrypt keys

Secondary group key rollover
« each decrypt key has a version number
* amember has the access to all the previous versions of decrypt key
* implicitly done through key chaining
+ akey of version N is encrypted with a key of version N+1

Encrypted Data Format

* Encode encryption related information in
content

* minimize packet format changes

Content ::= CONTENT-TYPE TLV-LENGTH
EncryptedContent
EncryptedContent ::= ENCRYPTED-CONTENT-TYPE TLV-LENGTH
KeyLocator
EncryptionAlgorithm
InitialVector?
EncryptedPayLoad
EncryptionAlgorithm ::= ENCRYPTION-ALOGRITHM-TYPE TLV-LENGTH
nonNegativeInteger // algorithm id
InitialVector ::= INITIAL-VECTOR-TYPE TLV-LENGTH
BYTE+
EncryptedPayLoad ::= ENCRYPTED-PAYLOAD-TYPE TLV-LENGTH
BYTE+

Encrypt Private Keys

- If we need to use a public key k', to
encrypt a private key k2 ;,
* The content payload consists of two
EncryptedContent TLV blocks
* block 1: a symmetric key k. encrypted using

k1pub
* ks length should be less then k',
» block 2: private key k=, encrypted using ki
 the EncryptionKeylLocator will be ignoread

Naming Tree

Two branches under the data root

« Data branch bms-root

* consists of producer’'s namespaces
* producer may have sub tree under its own

data read
namespace ®
* the basic data unit is at the timestamp level &
. ' i i ® 7 buildi | / =
gsé?n%nrﬁsmay consists of multiple § building | boelter % 3
» Read branch 8 s a
« consists of primary read access groups @ room 4805 —— ﬁ--<— 4805 o
+ nodein regd brangh nrgas a . 5 O o | ©
corresponding node in data tree n Q <)
P J -§ subsystem| electrical — — Ea—:l electrical | | ge key |
How to determine a producer’s primary 5 N | |
read access group? s device xfmr-6 ge key 1420000
« given a nd, n' that shares the longest 8
“prefix” with nd datatype | dmd 5 1423000
» for producer (in the example) > g
+ /bms/data/boelter/4805/electrical/xfmr-6 subtype inst S
« the primary group should be g
+ /bms/read/boelter/4805/electrical _
« rather than timestamp 14123413\ P,

r

+ /oms/read/boelter/4805 T
seg1

seg2 | .. segN

Femmm N

Content Encrypt Key k,

« Name
» /<data-root>/data/<data_node_name>/encrypted_key/[timestamp]
+ /bms/data/boelter/4805/electrical/xfmr-6/dmd/inst/encrypted_key/1423413

« Data & k,

+ k. name is placed in data’s EncryptionKeylLocator

+ ideal case: one k, for one data unit
+ segments of the same data unit are encrypted using the same Kk,
 timestamp of k, should be the same as the one of data unit

* sequential case: one k, for data produced during a certain period
* Dbeginning of the period: timestamp of k,
+ end of the period: timestamp of next kg

» hierarchical case: one k, for a group of data under the same data node during a
certain period

encrypted_key

encrypted_key

| 142 | [145 | | 142 | {142 | [147 | J142 || 145] 147 || 152 | [142)| 145 | [151 || 155 | | 143 || 146 | | 150 | | 152 |
== RFE A 2L /' Ir Iy Ir s Ir A
1 7 1 7 , - L L
T e I e j] R
(a) Ideal Case (b) Sequential Case (c) Hierarchical Case

12

Primary Group Encrypt Key (Kqe Kgq)

Group name
* /<data-root>/read/<data_name_space>
* /bms/read/boelter/4805

Each group encrypt/decrypt key has a timestamp
* indicate the beginning of the period when the key takes effect
» also implicitly indicate the end of the effective period of the previous key

Group encrypt key kg (public key)
* name: /<group_ name>/encrypt|on key/[timestamp]
« content: key bits of kge
* signed by group authority key kgs

Group decrypt key kgq (private key)
published as a copy encrypted using each group member’s encryption key
* name: /<group_encrypt_key_name>/[member_public_key_name]
« content: EncryptedContent (EncryptionKeylLocator: member’s public key name)
* signed by group signing key kg (optional)

ke & k
ge
* aproducer’s content encrypt key kg is encrypted with the encryption key kg, of the producer’s primary group
+ the effective period of ke must fall into the effective period of kge.
+ content of kg: EncryptedContent (EncryptionKeylLocator: primary group’s encrypt key name)

Secondary Group Encrypt Key

Group name
* no restriction, recommend /<data-root>/group/<any_group_tag>
« /oms/group/audit

Each group encrypt/decrypt key has a version
* indicates the state of group membership
* once amember is removed, generate a new version of key
* amember with the access to the key of version N should also have the access to the key of version N-1

Group encrypt key (public key)
* name: /<group_name>/encryption_key/[version]
* content: public key bits
* signed by group authority key

Group decrypt key (private key)
* name: /<group_name>/encryption_key/[version]/[member_public_key_name]
» content: encrypted private key (EncryptionKeylLocator: member’s public key name)
* signed by group authority key (optional)

Key chaining
* /<group_name>/encryption_key/[old_version]/[new_version]
* when a user is admitted into a group, the user can collect all the previous decrypt keys

Group Authority Key (Kg, Kge)

« Owned by group manager only

« Usage 1: data signing
* sign group encryption key kg (public key)
« may also sign the encrypted copies of group decryption key kgq (private key)

« Usage 2: privilege delegation
* signing the authority key of a primary group for a sub-namespace
« /oms/read/boelter can create a sub primary group /bms/read/boelter/4805

« sub primary group has less privilege
members of /bms/read/boelter/4805 cannot access data under /oms/data/boelter/4809 which is
accessible to members of /oms/read/boelter

. thdedparent primary group still retain the access of its child group through “reverse-
adding”

» child group should add parent group as a member (encrypt child group’s decrypt key with
parent group’s encrypt key)

» if child group fails to do so, parent group can revoke the certificate of child’s authority key
« optimization: child group may “reverse-add” all its ancestors

Primary Group Delegation

One (say A,) owns the root of auth sub-tree, e.g., /loms/read
* A, has the private key of authority key of group /bms/read

* A, creates the group encryption public key with timestamp 142000

Add group member
* one (say U,) requests the membership of group /bms/read
+ A, verifies the eligibility of U, (external verification)
* A, publishes an encrypted group decryption key
/[U, public key name]

Create a sub group
* one (say A,) requests a sub group /bms/read/boelter
* A2create a key
+ A, verifies the eligibility of A, (external verification)
* A, signs the group authority key for /oms/read/boelter
* A, creates its own group encryption public key with timestamp 1423000

* A, adds its parent group (/bms/read) as its group member (reverse-adding)
* publishing its group decryption key encrypted using /bms/read encryption key

. so member of /oms/read have all the access that member of /bms/read/boelter has
+ If A, failed to do so, A, can revoke A,’s group authority public key

—Xample

Decrypt Key Change

When?

« amember is removed from a group,
» the group manager should generate a new group encryption/decryption key pair

* the new key pair should have
» alarger timestamp (for primary group)
» alarger version (+1) (for secondary group)

+ the new key pair is encrypted using the public key of remaining members
* removed member loses the access

« for secondary group, the old key is also encrypted with the new key

Who is affected?

* anyone who use the corresponding encrypt key
* groups to which the decrypt key owner belongs to
+ data producers if its primary group’s encrypt key is changed

How to detect? discussed later

What to do?
» affected data producer must update its content encryption key
« itis up to affected group manager to update the its own encryption/decryption key pair

How to detect encrypt key change?

* Approach 1:
proactively notification

« each group should know
Its covered producers

* send an interest with its
latest group encryption
key encoded

« producer verifies the
encryption key
« verification logic 2
e producer reply to the
Interest with its current
group encryption key
name

share the
same prefix?
smaller
timestamp?
larger
timestamp?

No

onger group
prefix?

Yes

valid
signature?
Yes

Accept

Yes

< Reject)

)
N

How to detect encrypt key change?

« Approach 2: proactively probe

« producer subscribe following changes on its
corresponding group
e primary group encryption key change
 potential primary group changes
* new primary group added
e current primary group removed
« Apply the same verification logic as
Approach 1

Producer <-> Primary Group
(active mode)

Assume
* each primary group has a management process running all the time

A producer sends interests to retrieve its primary group’s encryption key
« primary group resolution: find the group which has the longest prefix of the producer

A primary group publishes its delegation info
* /<primary_group_name>/Delegationinfo/[version]
» alist of delegate name spaces (sub primary groups)

» a producer starts from fetching the delegation info of root primary group, then
recursively find its corresponding primary group

A primary group also publishes its encryption key
» both delegation info and key are placed in a repo

A producer still keeps outstanding interests to retrieve delegation updates
« always retrieve the latest version
* interest may contain an exclude filter

Producer <-> Primary Group
(passive mode)

Assume
* each primary group has a management process running all the time
« data producers cannot express interests

Primary group encryption public key is sent through an interest to a
producer
* primary group management process maintains a managed producer list (configured)
* each producer register a prefix to receive group public key
* /<producer_name>/PrimaryGroupKey
* an interest name is
» /<producer_name>/PrimaryGroupKey/[primary_group_encrypt_key_cert]
* interest does not need to be signed
producer should be able to verify the certificate of primary group encrypt key

When the primary group manager generates a new encrypt key, the
management process distributes the key to all the managed producers

Primary Group <-> Secondary
Group

A secondary group key is sent to primary group through interests
* primary group registers a prefix:
* /<primary_group_name>/SecondaryGroupKey
* aninterest name is
+ /<primary_group_name>/SecondaryGroupKey/[secondary_group_encrypt_key_cert]

* interest does not need to be signed
* primary group should be able to validate the secondary group’s key
* mapping from secondary to primary group is defined in a trust schema

A secondary group does not require an online process
* secondary group is managed by user
* primary group requires an online process which is managed automatically

* secondary group manager sends its group encryption key (in terms of interest) to its related
primary group management processes

» secondary group manager publish its group decryption key (encrypted using each member’s
public key) in a repo

A primary group process, when receiving an updates of a member’s encryption key,
create a new group encryption key

» notify related producer (either through interests or simply publish the encryption key)

* publish its decryption key (encrypted using each secondary group’s encrypt key) in a repo

