
Group-based Encryption
Protocol

1

Scenario

•  One or more data producers!

•  produced contents are encrypted!
•  data is produced in a time sequence!

•  User group!
•  group members have the same read access to data!
•  a group member could be an individual user or another group!
•  each group has a manager who can decide the membership!

•  Read access to data is granted through groups!
•  data producer has a primary read access group!

•  multiple producers may share the same primary read access group!
•  manager of the primary read access group can !

•  grant the access to another user or a secondary group by adding the user or
group as a group member!

•  a secondary group consists of individual users!

2

Group Keys

•  Each group (either primary or

secondary) has two pairs of
public/private keys!
•  group authority key: (kgv, kgs)

•  only used for verification/signing!
•  private key owner: group manager!

•  group encrypt/decrypt key: (kge, kgd)!
•  only used for encryption/decryption!
•  private key owner: every group

member!

•  Group decrypt key kgd!
•  generated by group manager!
•  encrypted with members’ public key!

•  if member is a group, encrypted with
the member group’s kge !

•  (optionally) signed with kgs !

/bms/read/boelter/4805 /bms/read/boelter

/bms/group/audit

/alice

/bob

manager

kge(g0)
kgd(g0)

kv(alice)

kv(bob)

kge(g1)

kge(g2)

g0

g1

g2

3

Primary/Secondary Groups

•  Each producer!

•  must have a primary read access
group!

•  may have one ore more secondary
groups!

•  Secondary groups are managed
as members of the primary group!
•  the primary group’s decrypt key kgd

is encrypted with secondary group’s
k’ge !

•  members of a primary group also
have the access to the primary
group’s kgd!

•  Producer only needs to encrypt its
data encryption key ke with its
primary group’s kge !

/b
m

s/
da

ta
/b

oe
lte

r/4
80

5/
el

ec
tri

ca
l/x

fm
r-6 /bms/read/boelter/4805 /bms/read/boelter

/bms/group/audit

/alice

/bob

primary
group

manager

secondary
group

secondary
group

g0

g1

g2

4

Primary/Secondary Groups (cont’d)

•  Primary group’s privilege!

•  determined by the group name!
•  group name is related to producer name!

•  group name: /bms/read/boelter/4805!
•  producer name: /bms/data/boelter/4805/electrical/xfmr-6!

•  Secondary group’s privilege: !
•  combination of primary groups of which the group holds a membership!
•  group name is irrelevant to producer name!

•  if a group /bms/group/audit is the member of both /bms/read/boelter and /bms/read/melnitz,
the member of group /bms/group/audit has the access to data under both /bms/data/boelter
and /bms/data/melnitz!

•  Ideally!
•  the membership of primary groups are defined by secondary groups and are

relatively stable !
•  audit group are always authorized to read data from each building!

•  the membership of secondary groups are defined by individual users and may
change from time to time!
•  a individual user may be occasionally added into/removed from the audit group!

5

General Process

•  Data publishing!

•  generate content!
•  encrypt content using a symmetric content encryption key ke
•  publish encrypted content!

•  signed with the producer’s private key!
•  encrypt ke using the primary group encryption public key kge
•  publish encrypted ke !

•  signed with the producer’s private key!

•  Data consuming!
•  fetch the encrypted content!
•  fetch the encrypted content encrypt key ke (through EncryptKeyLocator)!
•  determine the corresponding primary group’s encrypt key kgd !
•  if a consumer is authorized (member of the primary group or secondary group), the

consumer should have the primary group decrypt key kgd!
•  decrypt content encrypt key ke !
•  decrypt content!

•  Centralized encryption key management is avoided!

6

General Process

Producer

Data

Encrypted
Data

Primary Group Manager Primary Group Member
(secondary group/

individual user)

Member
public key
kv/kge

Member
private key
ks/ kgd

Group
encrypt

public key
kge

Group
decrypt

private key
kgd

Data encrypt
symmetric

key ke

Data

Publicly
Domain

Private
Domain

Private
Domain

Encryption Decryption

7

Group Key Rollover

•  Adding a new member does not require a new group encrypt/decrypt key!

•  A new group encrypt/decrypt key must be generated when a member is removed from the
group!

•  A group manager may also periodically generate a new group encrypt/decrypt key !

•  Primary group key rollover!
•  each decrypt key has a timestamp and represents the access to data produced during a certain

period!
•  access to a particular decrypt key must be explicitly granted!

•  access to a decrypt key with a later timestamp does not imply the access to previous decrypt keys!

•  Secondary group key rollover!
•  each decrypt key has a version number!
•  a member has the access to all the previous versions of decrypt key!

•  implicitly done through key chaining!
•  a key of version N is encrypted with a key of version N+1!

8

Encrypted Data Format

•  Encode encryption related information in

content!
•  minimize packet format changes!
Content ::= CONTENT-TYPE TLV-LENGTH
 EncryptedContent
EncryptedContent ::= ENCRYPTED-CONTENT-TYPE TLV-LENGTH
 KeyLocator
 EncryptionAlgorithm
 InitialVector?
 EncryptedPayLoad
EncryptionAlgorithm ::= ENCRYPTION-ALOGRITHM-TYPE TLV-LENGTH
 nonNegativeInteger // algorithm id
InitialVector ::= INITIAL-VECTOR-TYPE TLV-LENGTH
 BYTE+
EncryptedPayLoad ::= ENCRYPTED-PAYLOAD-TYPE TLV-LENGTH
 BYTE+

9

Encrypt Private Keys

•  If we need to use a public key k1

pub to
encrypt a private key k2

priv!
•  The content payload consists of two

EncryptedContent TLV blocks!
•  block 1: a symmetric key ks encrypted using

k1
pub !
•  ks length should be less then k1

pub !
•  block 2: private key k2

priv encrypted using ks !
•  the EncryptionKeyLocator will be ignored!

10

Naming Tree

•  Two branches under the data root!

•  Data branch!
•  consists of producer’s namespaces!
•  producer may have sub tree under its own

namespace!
•  the basic data unit is at the timestamp level!

•  data unit may consists of multiple
segments!

•  Read branch!
•  consists of primary read access groups!
•  node in read branch nr has a

corresponding node in data tree nd!

•  How to determine a producer’s primary
read access group?!
•  given a nd, nr that shares the longest

“prefix” with nd!
•  for producer (in the example)!

•  /bms/data/boelter/4805/electrical/xfmr-6!
•  the primary group should be !

•  /bms/read/boelter/4805/electrical !
•  rather than !

•  /bms/read/boelter/4805!

bms-root

readdata

boelter

4805

dmd

1423413

electrical

xfmr-6

inst

building

room

subsystem

device

data type

subtype

timestamp

da
ta

 p
ro

du
ce

r n
am

es
pa

ce boelter

4805

electrical ge key

1420000ge key

1423000

gr
ou

p'
s

pr
iv

ile
ge

gr
ou

p'
s

pr
iv

ile
ge

pr
od

uc
er

 s
ub

tre
e

seg1 seg2 ... segN

11

Content Encrypt Key ke

•  Name!

•  /<data-root>/data/<data_node_name>/encrypted_key/[timestamp]!
•  /bms/data/boelter/4805/electrical/xfmr-6/dmd/inst/encrypted_key/1423413!

•  Data & ke
•  ke name is placed in data’s EncryptionKeyLocator !
•  ideal case: one ke for one data unit!

•  segments of the same data unit are encrypted using the same ke
•  timestamp of ke should be the same as the one of data unit!

•  sequential case: one ke for data produced during a certain period!
•  beginning of the period: timestamp of ke !
•  end of the period: timestamp of next ke !

•  hierarchical case: one ke for a group of data under the same data node during a
certain period!

12

dmd

inst

142

encrypted_key

142

seg1 ... segN

145

seg1 ... segN

145

dmd

inst

142

encrypted_key

147 142 145 147 152 143 146

dmd

inst

140

encrypted_key

142 145

avg

150 152151 155

150

(a) Ideal Case (b) Sequential Case (c) Hierarchical Case

Primary Group Encrypt Key (kge, kgd)

•  Group name!

•  /<data-root>/read/<data_name_space>!
•  /bms/read/boelter/4805 !

•  Each group encrypt/decrypt key has a timestamp!
•  indicate the beginning of the period when the key takes effect!
•  also implicitly indicate the end of the effective period of the previous key!

•  Group encrypt key kge (public key)!
•  name: /<group_name>/encryption_key/[timestamp]!
•  content: key bits of kge !
•  signed by group authority key kgs !

•  Group decrypt key kgd (private key)!
•  published as a copy encrypted using each group member’s encryption key!
•  name: /<group_encrypt_key_name>/[member_public_key_name]!
•  content: EncryptedContent (EncryptionKeyLocator: member’s public key name)!
•  signed by group signing key kgs (optional)!

•  ke & kge !
•  a producer’s content encrypt key ke is encrypted with the encryption key kge of the producer’s primary group!
•  the effective period of ke must fall into the effective period of kge.!
•  content of ke: EncryptedContent (EncryptionKeyLocator: primary group’s encrypt key name)!

13

Secondary Group Encrypt Key

•  Group name!

•  no restriction, recommend /<data-root>/group/<any_group_tag>!
•  /bms/group/audit!

•  Each group encrypt/decrypt key has a version!
•  indicates the state of group membership !
•  once a member is removed, generate a new version of key!
•  a member with the access to the key of version N should also have the access to the key of version N-1!

•  Group encrypt key (public key)!
•  name: /<group_name>/encryption_key/[version]!
•  content: public key bits!
•  signed by group authority key!

•  Group decrypt key (private key)!
•  name: /<group_name>/encryption_key/[version]/[member_public_key_name]!
•  content: encrypted private key (EncryptionKeyLocator: member’s public key name)!
•  signed by group authority key (optional)!

•  Key chaining!
•  /<group_name>/encryption_key/[old_version]/[new_version]!
•  when a user is admitted into a group, the user can collect all the previous decrypt keys!

14

Group Authority Key (kgv, kgs)

•  Owned by group manager only!

•  Usage 1: data signing!
•  sign group encryption key kge (public key)!
•  may also sign the encrypted copies of group decryption key kgd (private key)!

•  Usage 2: privilege delegation!
•  signing the authority key of a primary group for a sub-namespace!

•  /bms/read/boelter can create a sub primary group /bms/read/boelter/4805!
•  sub primary group has less privilege!

•  members of /bms/read/boelter/4805 cannot access data under /bms/data/boelter/4809 which is
accessible to members of /bms/read/boelter!

•  the parent primary group still retain the access of its child group through “reverse-
adding”!
•  child group should add parent group as a member (encrypt child group’s decrypt key with

parent group’s encrypt key)!
•  if child group fails to do so, parent group can revoke the certificate of child’s authority key!

•  optimization: child group may “reverse-add” all its ancestors!

15

Primary Group Delegation Example

•  One (say A1) owns the root of auth sub-tree, e.g., /bms/read!

•  A1 has the private key of authority key of group /bms/read!
•  /bms/read/KEY/%01%ff/%01!

•  A1 creates the group encryption public key with timestamp 142000!
•  /bms/read/encryption_key/142000!

•  Add group member!
•  one (say U1) requests the membership of group /bms/read!
•  A1 verifies the eligibility of U1 (external verification)!
•  A1 publishes an encrypted group decryption key!

•  /bms/read/encryption_key/142000/[U1 public key name]!

•  Create a sub group!
•  one (say A2) requests a sub group /bms/read/boelter!

•  A2 create a key /bms/read/boelter/KEY/%c0%9d!
•  A1 verifies the eligibility of A2 (external verification)!
•  A1 signs the group authority key for /bms/read/boelter!
•  A2 creates its own group encryption public key with timestamp 1423000!

•  /bms/read/boelter/encryption_key/142300!
•  A2 adds its parent group (/bms/read) as its group member (reverse-adding)!

•  publishing its group decryption key encrypted using /bms/read encryption key!
•  /bms/read/boelter/encryption_key/142300/[/bms/read/encryption_key/142000]!

•  so member of /bms/read have all the access that member of /bms/read/boelter has!
•  If A2 failed to do so, A1 can revoke A2’s group authority public key!

16

Decrypt Key Change

•  When? !

•  a member is removed from a group, !
•  the group manager should generate a new group encryption/decryption key pair!
•  the new key pair should have !

•  a larger timestamp (for primary group)!
•  a larger version (+1) (for secondary group)!

•  the new key pair is encrypted using the public key of remaining members!
•  removed member loses the access!

•  for secondary group, the old key is also encrypted with the new key!

•  Who is affected?!
•  anyone who use the corresponding encrypt key!

•  groups to which the decrypt key owner belongs to!
•  data producers if its primary group’s encrypt key is changed!

•  How to detect? discussed later!

•  What to do?!
•  affected data producer must update its content encryption key!
•  it is up to affected group manager to update the its own encryption/decryption key pair!

17

How to detect encrypt key change?

•  Approach 1:

proactively notification!
•  each group should know

its covered producers!
•  send an interest with its

latest group encryption
key encoded!

•  producer verifies the
encryption key!
•  verification logic à !

•  producer reply to the
interest with its current
group encryption key
name!

share the
same prefix?

smaller
timestamp?

longer group
prefix?

valid
signature?

larger
timestamp?

AcceptReject

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

18

How to detect encrypt key change?

•  Approach 2: proactively probe!
•  producer subscribe following changes on its

corresponding group!
•  primary group encryption key change!
•  potential primary group changes!

•  new primary group added!
•  current primary group removed!

•  Apply the same verification logic as
Approach 1!

19

Producer <-> Primary Group "
(active mode)

•  Assume !
•  each primary group has a management process running all the time!

•  A producer sends interests to retrieve its primary group’s encryption key!
•  primary group resolution: find the group which has the longest prefix of the producer!

•  A primary group publishes its delegation info!
•  /<primary_group_name>/DelegationInfo/[version]!
•  a list of delegate name spaces (sub primary groups)!
•  a producer starts from fetching the delegation info of root primary group, then

recursively find its corresponding primary group!

•  A primary group also publishes its encryption key!
•  both delegation info and key are placed in a repo!

•  A producer still keeps outstanding interests to retrieve delegation updates!
•  always retrieve the latest version!
•  interest may contain an exclude filter!

20

Producer <-> Primary Group "
(passive mode)

•  Assume !
•  each primary group has a management process running all the time!
•  data producers cannot express interests!

•  Primary group encryption public key is sent through an interest to a
producer!
•  primary group management process maintains a managed producer list (configured)!
•  each producer register a prefix to receive group public key!

•  /<producer_name>/PrimaryGroupKey!
•  an interest name is!

•  /<producer_name>/PrimaryGroupKey/[primary_group_encrypt_key_cert] !
•  interest does not need to be signed!

•  producer should be able to verify the certificate of primary group encrypt key!

•  When the primary group manager generates a new encrypt key, the
management process distributes the key to all the managed producers!

21

Primary Group <-> Secondary
Group

•  A secondary group key is sent to primary group through interests!
•  primary group registers a prefix:!

•  /<primary_group_name>/SecondaryGroupKey!
•  an interest name is!

•  /<primary_group_name>/SecondaryGroupKey/[secondary_group_encrypt_key_cert]!
•  interest does not need to be signed!

•  primary group should be able to validate the secondary group’s key!
•  mapping from secondary to primary group is defined in a trust schema!

•  A secondary group does not require an online process!
•  secondary group is managed by user !

•  primary group requires an online process which is managed automatically!
•  secondary group manager sends its group encryption key (in terms of interest) to its related

primary group management processes!
•  secondary group manager publish its group decryption key (encrypted using each member’s

public key) in a repo!

•  A primary group process, when receiving an updates of a member’s encryption key,
create a new group encryption key!
•  notify related producer (either through interests or simply publish the encryption key)!
•  publish its decryption key (encrypted using each secondary group’s encrypt key) in a repo!

22

