Application Perspective on Autoconfiguration / Publisher Mobility
Revision 2 - updated October 13, 2015
Jeff Burke - jburke@ucla.edu
Major notes from Alex Afanasyev marked with [AA]. 

[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Purpose of this document

· Clarify and provide a single point of reference for the application team that describes the exact steps by which NDN connectivity is obtained “from scratch” by a mobile device that wishes to consume and publish data. 
· [bookmark: _GoBack]Determine what functionality is part of the stack (as currently implemented by NFD and related tools), what should be part of the libraries (e.g., ndn-cxx or ndn-ccl), and what is the responsibility of the application, as well as how communication between these components occurs.
· Distinguish between mechanisms for “now” (next two months) and “what is planned within the NP timeline” (by May 2016) and “what is the eventual best way” (next few years).    
· Establish open questions, etc. 
· Figure out a practical way to support straightforward use of NdnCon and the NP environment sample applications. 

Terminology

local node -  a slight generalization of an NDN instance that wants to autoconfigure:  an instance of one forwarder with a given default identity, libraries, multiple apps, etc.   (e.g., a host, a browser tab (someday), a VM, a mini-NDN container, etc.) 

upstream node – any node within one hop of the local node (e.g., localhop scope) that will forward interests to/from the local node 

Use case

Provide continuous connectivity to testbed for mobile nodes and ensure that applications can work, despite (local) network connectivity changes.

For example, a current NdnCon user, who has a certificate assigned for the testbed, wishes to travel from campus to campus, communicating via NdnCon with no location-specific steps needed.  

For example, a given user’s NdnCon is installed in a containerlocal node for nfd, and a default app cert corresponding to /ndn/edu/ucla (perhaps the same?), but the user travels to /ndn/edu/uiuc and wishes to participate in a conference. 

Aspects of Autoconfiguration

#1 – Bootstrapping Local Node Identity

( [AA] There is no such thing. ) 	Comment by Jeff Burke: See questions below.  I guess what I am asking about / pointing out here is that if the node’s identity is typically or best not the same as the user’s identity on the testbed, we should clarify this.  (And, clarify the trust relationship.)   

Current function: Install a default identity (self-signed certificate) associated with a given forwarder instance, and install it as the default to use for NFD? 

General function: Obtain a local node-level identity that can be used by the local forwarder to issue commands to upstream forwarders necessary for further autoconfiguration steps. 

[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Supported by:  	ndnsec  [installed with nfd] for cert generation
		
Defined in: 	nfd.conf? 

Described in: 	http://named-data.net/doc/NFD/current/INSTALL.html 
		http://named-data.net/doc/NFD/current/FAQ.html#how-to-configure-nfd-security

Use case: Prior to installing NdnCon, the user / configurer of the local node installs nfd, and configures the identity for the forwarder.  [Following what steps exactly?] 

There is no assumed trust relationship between the cert of a local node’s nfd and any associated testbed user.  [AA] 

Questions:
· What is the nature of the cert used by NFD for data/interest signing? 
· Why is repo-ng not needed (per AA) to serve this cert? 
· In the future, how will one bootstrap local node identity with no connectivity? 
· This is something related to local configuration (e.g., to allow run configuration commands). [AA]
· See some comments in next section that might apply? 

#2 – Bootstrapping connectivity-authentication identity  (currently “testbed user”) 

Note: We put this as step 2 because it is required for the fallback (step 3) option of ndn-autoconfig, which connects to the hub hardcoded as associated with a given prefix.  Further: it is essential part of automatic prefix propagation; it may or may not be directly used by applications. [AA] 

Current function: Generate and authorize a certificate for publishing on the NDN testbed, install this for use as the default cert for applications within a given containerlocal node. 

General function: For a given administrative domain (upstream node, at the simplest), authorize a given identity to publish data under a given prefix… perhaps one of many belonging to a “user”.   

Supported by:	http://ndncert.named-data.net
	ndnsec
	ndn-pib
	repo-ng (?)

Described in:  	http://ndncert.named-data.net/help
http://named-data.net/doc/ndn-cxx/current/manpages/ndnsec.html
http://redmine.named-data.net/projects/ndn-cxx/wiki/PublicKey_Info_Base
http://redmine.named-data.net/projects/repo-ng/wiki

[AA-]
Almost full instruction are on ndncert page.

However, there are “hidden” parts that depend on the way nfd is installed.
· When nfd installed manually from sources, nothing else to be done
· When nfd installed on Ubuntu from PPA, OSX from Macport, OSX from Homebrew, certificate (or derivative) needs to be added to NFD’s

A few highlights:
· Users and individual applications may have completely separate private/public/cert local nodes (in long term and on special platforms = always have separate).  As of right now, the local node is solely controlled by $HOME variable (each user, minus special cases, has unique HOME, for apps HOME can be overwritten).	Comment by Jeff Burke: Not sure that I fully understand what $HOME controls and what should respect it.  Apps? Libraries? 
· On Ubuntu/PPA, nfd is running as root with custom HOME variable (/var/lib/ndn/nfd; path can be checked in /etc/init/nfd.conf);
· Macports and homebrew similar, but different paths:  /opt/local/var/lib/ndn/nfd (+custom client.conf forcing file-based TPM);  /usr/local/var/lib/ndn/nfd (+custom client.conf forcing file-based TPM)

The bootstrap would need (depending on how things installed) the following:
· creating derivative key for <identity> or <identity>/rib (this one is to ensure the cert can be used only for RIB tasks)	Comment by Jeff Burke: Is this necessarily associated with the user, or isn’t it associated with a given local node? 
· publishing cert somewhere (with ndn-pib or repo-ng)

Use case: Prior to installing NdnCon, the user / configurer of the local node generates or retrieves a certificate associated with an identity, and this can be installed as the default identity for applications built against the standard NDN libraries.  This cert can be used to sign data in the appropriate namespace.  It can be default, but doesn’t need to be (this is longer term, but apps should use “schema” for appropriate key/cert selection). 

Questions:
· Is the same testbed authentication cert used on different nodes operated by the same user?  Wouldn’t it be preferably to identify these nodes differently, in the short term? 
· In the long term, does it make sense to distinguish between “the cert a node uses to gain connectivity” (and register prefixes?),  “the cert that authorizes a node to publish in some potentially non-localhop propagated prefix”, and a cert associated with a particular real human?  Are these indeed conflated in the short term? 
· Is there still a default application identity defined in client.conf or not?
· In the short term, how does an application know what identity to use as its root? 


#3 - Obtaining NDN Connectivity

Current function:  Establish a face to the best IP endpoint for a forwarder connected to the NDN testbed.

General function: On a change in connectivity, automatically (re)establish faces to one or more NDN forwarders that can provide the local local node with best NDN connectivity over its available communication media, given the identity established for the local node in #1. 	Comment by Jeff Burke: Do I have this right?  Or is it the testbed identity? 

Supported by:  ndn-autoconfig 

Described in: 	http://named-data.net/doc/NFD/current/manpages/ndn-autoconfig.html
		http://redmine.named-data.net/projects/nfd/wiki/HubDiscovery
		http://redmine.named-data.net/projects/nfd/wiki/NFD_autoconfiguration [incomplete]

Use case: “ndn-autoconfig –d” (re)creates routes to the testbed.  Changes are / could be passed up to NdnCon through a notification mechanism?  

Currently, this must be run manually in from-source installations.  With Ubuntu/ppa, homebrew, macports, this is as trivial as creating a upstart/system/launchd script.  [JB: Does this script exist on these platforms? I think it does but am not sure, don’t have one handy to check.]

[AA:] Currently, ndn-autoconfig does not delete anything, rather adds or re(creates) connection.  These faces are not persistent. (It is intentional for face to be persistent.)  Non-reachable faces should be removed when detected.	Comment by Jeff Burke:  Yes, but there is an issue here for the everyday user where temporary losses in connectivity (broken TCP tunnel, temporarily unreachable UDP tunnel) cause an autoconfig route to go away.   Persistent faces help with that.  

What timescale does autoconfig detect connectivity changes / issues – i.e., how long would it take to re-establish a tunnel? 

Why not use permanent routes and have autoconfig remember which faces it created, then remove them on connectivity changes if they no longer apply. (If they do still apply, then face persistence would keep them up.)   So, for example, if a local node changes from one wifi network to another but have the same hub, why does it need to tear down and recreate a route?  Or, if it does do that, can it be done as fast as the persistence mechanism would do it?
  
Questions:
· Currently, when NDN applications are running and autoconfigured prefix(es) change, applications are not informed of this. (Nor of adding/removing default route.)  Will they be in the future?  In the meantime, how should they detect changes that may require them to publish in a different namespace? Probe via #6 periodically?
· Why does autoconfig only return a single route?   Might it be generalized in the future.
· How fast does autoconfig detect and re-establish connections after changes? 
· What connectivity changes are detected by autoconfig? 
· Should faces created by autoconf be persistent? 

Library action items:
· Is there / will there be notification of route changes (caused by autoconfig or nfdc) that should be handled by the libraries / available to applications?  


#4 – Autoregistration of Backroutes

Current function:  On the testbed, when a local node creates a route to a testbed node, some prefixes (such as (/ndn/multicast) are automatically registered, resulting in interests in those prefixes being forwarded to any local node connected to that testbed node.

General function:  When a local node creates a face to another (upstream) node, the latter registers a predetermined set of prefixes with the local node, so the local node will receive interests in those “default” prefixes. 

Supported by:  ndn-autoreg server

Described in: http://named-data.net/doc/NFD/current/manpages/nfd-autoreg.html

Question: 
· Is the local NFD informed by the upstream NFD when a backroute is created?  

Use case: Whenever an NFD instance used by NdnCon sets up connectivity to the testbed and sends an Interest, the /ndn/multicast  prefix is automatically registered as a backroute, enabling it to participate in chats / have access to a shared control channel.   Note that an Interest must be transmitted for the backroute to be created, so the upstream forwarder knows about the local node in the case of connectionless transport. 

#5 – Explicit Prefix Registration & Propagation

Current function:  1) creates a “route” from the local forwarder to the app; and 2) creates a “route” from the upstream forwarders to the local node NFD (and in turn to the application).   

[bookmark: OLE_LINK7][bookmark: OLE_LINK8]General function:  Per-application, per-face registration of a prefix for which the application wishes to receive Interests from local hops.   1) For the local node, creates a “route” from the local forwarder to the app; 2) creates a “route” from the upstream forwarder to the local local NFD.

[AA:] How far this propagates depends on the configuration (which keys NFD on the hub possesses).  For now, assumption is that this propagation goes till the node that runs NLSR (the announced prefix supposed to be already configured in NLSR; if not configured, something will break).

Note, the upstream NFD’s nfd.conf’s rib…localhost_security needs to be configured to the appropriate trust schema.  [Where is this scheme defined?]

Supported by:  Libraries and forwarder 

Described in:  Li, Y. et al, “Automatic Prefix Propagation.” NDN Tech Report NDN-00XX.  

Question:
· Is any new library support needed for propagation?  My understanding is this is behind-the-scenes? 
· How does this relate to support for listening on an available communication media (e.g., wireless broadcast channel) without registering an explicit route with a remote forwarder?   This feature comes up in IoT related discussions quite a bit.  

#6 – [Local] Prefix Discovery

Current/General function:  Determine the prefixes for which the upstream forwarder will forward interests to the local node; typically used for globally routed prefixes. 

[AA:] This mechanism is for discovery of “globally” routable prefixes (prefix that app should use if it wants to communicate beyond 2 hops). 	Comment by Jeff Burke: Would that include backroutes that are globally routable?

Questions: 
· Why not have a similar function to tell what prefixes the upstream forwarder is willing to forward on? 

Supported by: nfd-autoconfig-server

Described in: http://named-data.net/doc/NFD/current/misc/local-prefix-discovery.html#local-prefix-discovery

Use case:  Until support is provided in underlying libraries (?), NdnCon should check forwardable prefixes returned by this Interest against the prefixes it wishes to publish data in, and take action to either republish in the new prefix and inform interested consumers of the change in an application-specific way, or follow step #7 to provide redirection. 

Library action items:
· What library support is intended?  Is it already available in ndn-cxx?
 

Aspects of Publisher Mobility Support

#7 – Prefix redirection / Mobile publisher support 

Arguably not part of autoconfiguration.  But, relates to typical steps that an application / local node must take to ensure that it can publish in the prefixes that it wishes to…  And these steps may need to get reconfigured/changed upon changes in connectivity (routable prefix) – doesn’t that make it an autoconfiguration step?  

Current / General function:  For prefixes that a local node wishes to publish but are not forwarded by the upstream node, provide a mechanism to redirect interests to a prefix that it can publish under. 

Supported by:  Register LINK in NDNS, or application specific mechanism.   (Libraries for redirection?)

[AA:] SNAMP has 2 use cases: routing scalability (we don’t have this problem yet), mobile upload (not the case).  	Comment by Jeff Burke: For our use case, don’t we care about the latter?  We have a mobile device (laptop) moving from network to network, potentially using different hubs, which needs to 1) be able to publish (at least) rendezvous information in a well-known namespace and/or 2) participate in a multicast channel for conference discovery and/or 3) publish ephemeral data in a namespace that is not directly forwarded by the upstream node(s) that it is getting connectivity from.

Described in: 
· What is canonical ndns ref?
· Afanasyev, Alexander, et al. "SNAMP: Secure Namespace Mapping to Scale NDN Forwarding." Proceedings of 18th IEEE Global Internet Symposium (GI 2015). 2015.
· http://redmine.named-data.net/issues/3000

Use case:  When a local node that is configured for a user at UCLA (Step #2) obtains NDN connectivity via the UIUC hub, it registers a redirection link with its /ndn/edu/ucla NDNS to enable interests in that prefix to find it. 

Questions:
	- In practice in the short to medium term, which parts of publisher mobility are supported in the forwarder, which in the libraries, and what does each application need to do?   
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